解:?$(1)$?當(dāng)點(diǎn)?$P$?在?$BC$?上時(shí),即?$0≤t≤2,$??$AQ=t,BQ=4-t,BP=2t,PC=4-2t,$?
?$∵S_{△PDQ}=S_{正方形ABCD}-S_{△ADQ}-S_{△BPQ}-S_{△CPD},$?
?$∴16-\frac {1}{2}?4?t-\frac {1}{2}?(4-t)?2t-\frac {1}{2}?4?(4-2t)=11,$?
整理得?$t^2-2t-3=0,$?解得?$t_1=-1,$??$t_2=3,$?都不合題意舍去;
當(dāng)點(diǎn)?$P$?在?$CD$?上時(shí),即?$2<t≤3,$?如圖,

?$AQ=t,DP=8-2t,$?
?$∵S_{△PDQ}=\frac {1}{2}BC?DP,$?
?$∴\frac {1}{2}?4(8-2t)=11,$?解得?$t=\frac {5}{4}($?不合題意舍去),
∴不存在?$t$?的值,使?$△PQD$?的面積為?$11\ \mathrm {cm^2}$?
?$(2)$?存在.
①當(dāng)?$PD=DQ$?時(shí),根據(jù)勾股定理,得
?$16+(4-2t)^2=16+t^2,$?
解得?$t_1=\frac {4}{3},$??$t_2=4($?不符合題意,舍去).
②當(dāng)?$PD=PQ$?時(shí),根據(jù)勾股定理,得
?$16+(4-2t)^2=(4-t)^2+(2t)^2,$?
整理得:?$t^2+8t-16=0$?
解得?$t_1=4\sqrt {2}-4,$??$t_2=-4\sqrt {2}-4($?不符合題意,舍去).
答:存在這樣的?$t=\frac {4}{3}$?秒或?$(4\sqrt {2}-4)$?秒,使得?$△PQD$?是以?$PD$?為一腰的等腰三角形.
?$∴(2t)^2+(4-t)^2=(4-2t)^2+4^2,$?
整理得?$t^2+8t-16=0,$?解得?$t_1=-4\sqrt {2}-4($?舍去),?$t_2=4\sqrt {2}-4,$?
?$∴t=\frac {4}{3}(\mathrm {s})$?或?$4\sqrt {2}-4(\mathrm {s})$?時(shí),?$△PQD$?是以?$PD$?為一腰的等腰三角形.