解:?$(1) ∵ AB$?是?$⊙O$?的直徑,
?$∴ ∠ACB=90°$?
?$∵ AD$?平分?$∠BAC,$?
?$∴ ∠BAC=2∠BAD. $?
?$∵ ∠BOD=2∠BAD,$?
?$∴ ∠BOD=∠BAC,$?
?$∴ OD//AC,$?
?$∴ ∠OEB=∠ACB=90°,$?
?$∴ ∠OEC=180°-∠OEB=90°$?
?$(2)$?連接?$BD.$?
設(shè)?$OA=OB=OD=r,$?
則?$OE=r-4,$??$AB=2r. $?
?$∵ AB$?是?$⊙O$?的直徑,
?$∴∠ADB=90°,$?
∴在?$Rt△ADB$?中,?$BD2=AB2-AD2.$?
由?$(1),$?得?$∠OEB=90°,$?
?$∴ ∠BED=180°-∠OEB=90°,$?
?$∴ BE2=OB2-OE2=BD2-DE2,$?
?$∴ BD2=AB2-AD2=BE2+DE2=OB2-OE2+DE2,$?
?$∴ (2r)2-(2 \sqrt{35} )2=r2-(r-4)2+42.$?
整理,得?$r2-2r-35=0,$?
解得?$r=7$?或?$r=-5($?不合題意,舍去).
?$∴ AB=2r=14,$?
?$∴ BD= \sqrt{AB2-AD2} = \sqrt{142-(2\sqrt{35})2} =2 \sqrt{14} . $?
?$∵ AF$?是?$⊙O$?的切線,
?$∴ AF⊥AB. $?
?$∵ DG//AF,$?
?$∴ DG⊥AB. $?
?$∵ S_{△ABD}= \frac {1}{2}× AD×BD= \frac {1}{2}×AB×DG,$?
?$∴ DG=\frac {AD×BD}{AB} = \frac {2\sqrt{35}×2\sqrt{14}}{14} =2 \sqrt{10}$
?