證明?$:(1)$?如圖,連接?$OD,$?過點(diǎn)?$O$?作?$OM⊥BC$?于點(diǎn)?$M. $?
∵ 在等腰直角三角形?$ABC$?中,?$AC=BC,$??$O$?是?$AB$?的中點(diǎn),
?$∴ CO$?平分?$∠ACB,CO⊥AB. $?
?$∵ ⊙O$?與?$AC$?相切于點(diǎn)?$D,$?
?$∴ OD⊥AC,$?
?$∴ OD=OM, $?
?$∴ BC$?是?$⊙O$?的切線
?$(2)$?如圖,過點(diǎn)?$O$?作?$OH⊥AG$?于點(diǎn)?$H. $?
?$∵ ∠ACB=90°,CO$?平分?$∠ACB, $?
?$∴ ∠ACO=45°.$?
?$∵ CO⊥AB,$?
?$∴ ∠CAO=45°=∠ACO, $?
?$∴ OA=OC. $?
∵ 在?$Rt△AOC$?中?$,OA2+OC2=AC2,AC=4 \sqrt{2} ,$?
?$∴ OA=4.$?
在?$Rt△ADO$?中,同理,可得?$OD=2 \sqrt{2} ,$?
?$∴ OG=OD=2 \sqrt{2} $?
?$∵ ∠AOG=180°-∠AOC=90°, $?
?$∴ AG= \sqrt{OA2+OG2} =2 \sqrt{6}$?
?$∵ AG×OH=OA×OG=2S_{△AOG}, $?
?$∴ OH= \frac {OA×OG}{AG} = \frac {4\sqrt{3}}{3} ,$?
∴ 在?$Rt△OHG $?中?$,GH= \sqrt{OG2-OH2} = \frac {2\sqrt{6}}{3} $?
?$∵ OH⊥AG,OH$?過圓心?$O,$?
?$∴ FG=2GH= \frac {4\sqrt{6}}{3}$
?