證明:?$(1)∵C$?是?$\widehat{BD}$?的中點(diǎn),
?$∴\widehat{CD}=\widehat{BC}.$?
?$∵AB$?是?$⊙O$?的直徑,且?$CF⊥AB,$?
?$∴\widehat{BC}=\widehat{BF},$?
?$∴\widehat{CD}=\widehat{BF},$?
?$∴CD=BF.$?
∵在?$△BFG $?和?$△CDG $?中,?$∠F=∠CDG,$??$∠FGB=∠DGC,$??$BF=CD,$?
?$∴△BFG≌△CDG.$?
?$(2)$?如圖,過(guò)?$C$?作?$CH⊥AD$?于?$H,$?連接?$AC、$??$BC,$?
?$∵\(yùn)widehat{CD}=\widehat{BC},$?
?$∴∠HAC=∠BAC.$?
?$∵CE⊥AB,$?
?$∴CH=CE.$?
?$∵AC=AC,$?
?$∴Rt△AHC≌Rt△AEC,$?
?$∴AE=AH.$?
?$∵CH=CE,$??$CD=CB,$?
?$∴Rt△CDH≌Rt△CBE,$?
?$∴DH=BE=2,$?
?$∴AE=AH=2+2=4,$?
?$∴AB=4+2=6.$?
?$∵AB$?是?$⊙O$?的直徑,
?$∴∠ACB=90°,$?
?$∴∠ACB=∠BEC=90°.$?
?$∵∠EBC=∠ABC,$?
?$∴△BEC∽△BCA,$?
?$∴\frac {BC}{AB}=\frac {BE}{BC},$?
?$∴BC^2=AB·BE=6×2=12,$?
?$∴BF=BC=2\sqrt{3}.$?