解:?$(1)$?延長?$BP{至}E,$?使?$PE=PC,$?連結(jié)?$CE.$?
?$∵∠1=∠2=60°,$??$∠3=∠4=60°,$?
?$∴∠CPE=60°,$?
?$∴△PCE$?是等邊三角形,
?$∴CE=PC,$??$∠E=∠3=60°.$?
又?$∵∠EBC=∠PAC,$?
?$∴△BEC≌△APC,$?
?$∴PA=BE=PB+PE=PB+PC.$?
?$(2)$?過點?$B$?作?$BE⊥PB$?交?$PA$?于?$E.$?
?$∵∠1+∠2=∠2+∠3=90°,$?
?$∴∠1=∠3.$?
又易知?$∠APB=45°,$?
?$∴BP=BE,$?
?$∴PE=\sqrt{2}PB.$?
又?$∵AB=CB,$?
?$∴△ABE≌△CBP,$?
?$∴PC=AE,$?
?$∴PA=AE+PE=PC+\sqrt{2}PB.$?
?$(3)PA、$??$PB、$??$PC$?滿足關(guān)系式:?$PA=PC+\sqrt{3}PB.$?
理由如下:
在?$AP{上截取}AQ=PC,$?連結(jié)?$BQ,$?過點?$B$?作?$BM⊥PQ{于}M.$?
?$∵∠BAP=∠BCP,$??$AB=CB,$?
?$∴△ABQ≌△CBP,$?
?$∴BQ=BP.$?
又易知?$∠APB=30°,$?
?$∴PQ=\sqrt{3}PB,$?
?$∴PA=AQ+PQ=PC+\sqrt{3}PB.$?