解?$:(1) ∵ PC$?與?$⊙O$?相切于點(diǎn)?$C,$?
?$∴ OC⊥PC,$?
?$∴ ∠OCB+∠BCP=90°. $?
?$∵ OB=OC,$?
?$∴ ∠OCB=∠OBC. $?
?$∵ ∠ABC=2∠BCP, $?
?$∴ ∠OCB=2∠BCP, $?
?$∴ 2∠BCP+∠BCP=90°,$?
解得?$∠BCP=30°,$?
?$∴ ∠OCB=2∠BCP=60° $?
?$(2)$?連接?$DE.$?
?$∵ CD$?是?$⊙O$?的直徑,
?$∴ ∠DEC=90°. $?
?$∵ E$?是?$\widehat{BD}$?的中點(diǎn),
?$∴ \widehat{DE}=\widehat{BE}, $?
?$∴ ∠DCE=∠FDE=∠ECB= \frac {1}{2} ∠DCB=30°.$?
∵ 在?$Rt△DEF $?中?$,EF=3,∠FDE=30°,$?
?$∴ DF=2EF=6,$?
?$∴ DE= \sqrt{DF2-EF2} =3 \sqrt{3} .$?
又 ∵ 在?$Rt△DEC$?中?$,∠DCE=30°, $?
?$∴ CD=2DE=6 \sqrt{3} ,$?
即?$⊙O$?的直徑為?$6 \sqrt{3}$?