解:連接?$OB,$?如圖所示
?$ ∵AC$?是?$⊙O$?的直徑,弦?$BD⊥AO$?于點?$E,$??$BD=8\ \mathrm {cm}$?
?$ ∴BE=\frac 1 2BD=4\ \mathrm {cm}$?
設(shè)?$⊙O$?的半徑為?$x\ \mathrm {cm},$?則?$OB=OA=x\ \mathrm {cm},$??$OE=(x-2)\ \mathrm {cm}$?
在?$Rt△OEB$?中,由勾股定理,得?${OE}^2+{BE}^2={OB}^2,$?
即?${(x-2)}^2+{4}^2={x}^2$?
解得,?$x=5$?
?$ ∴⊙O$?的半徑為?$5\ \mathrm {cm},$?此時?$EC=OE+OC=8\ \mathrm {cm}$?
在?$Rt△BEC$?中,由勾股定理,得?$BC=\sqrt {{BE}^2+{EC}^2}=\sqrt {{4}^2+{8}^2}=4\sqrt {5}\ \mathrm {cm}$?
?$ ∵OF⊥BC,$??$OF{過圓心}$?
?$ ∴CF=\frac 1 2BC=2\sqrt {5}\ \mathrm {cm}$?
∴在?$Rt△OFC$?中,?$OF=\sqrt {{OC}^2-{CF}^2}=\sqrt {{5}^2-{(2\sqrt {5})}^2}=\sqrt {5}\ \mathrm {cm}$?