$解:能設(shè)A(a,\frac{8}{a}),$
$則B(\frac{a}{4},\frac{8}{a}),C(a,\frac{2}{a}).\ $
$①當AB為對角線時,$
$有\(zhòng)begin{cases}{x_{A} +x_{B} =x_{C} +x_{D},}\ \\ {\ y_{A}+y_{B}= y_{C}+y_{D},} \end{cases}\ $
$即\begin{cases}{a+\frac {a}{4}=a+x_{B} ,\ }\ \\ { \frac {8}{a}+\frac {8}{a}=\frac {2}{a}+y_{D}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {a}{4},}\ \\ {\ y_{D}=\frac {14}{a}, } \end{cases}\ $
$將D (\frac{a}{4},\frac{14}{a})代入y=2x,$
$解得a=2\sqrt {7}\ .$
$∴A(2\sqrt {7}, \frac{4\sqrt {7} }{7});$
$②當AC為對角線時,$
$有\(zhòng)begin{cases}{x_{A} +x_{C} =x_{B} +x_{D},}\ \\ { y_{A}+y_{C}= y_{B}+y_{D},} \end{cases}$
$即\ \begin{cases}{a+a=\frac {a}{4}+x_{D} ,\ }\ \\ { \frac {8}{a}+\frac {2}{a}=\frac {8}{a}+y_{D}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {7}{4}a,}\ \\ { y_{D}=\frac {2}{a}, } \end{cases}\ $
$將 D (\frac{7}{4} a,\frac{2}{a} 代入 y=2x,$
$解得a= \frac{2\sqrt {7} }{7},$
$∴A(\frac{2\sqrt {7} }{7},4\sqrt {7} );$
$\ ③當AD為對角線時,$
$有\(zhòng)begin{cases}{x_{A} +x_{D} =x_{B} +x_{C},}\ \\ { y_{A}+y_{D}= y_{B}+y_{C},} \end{cases}$
$即 \begin{cases}{a+x_{D}=\frac {a}{4}+ a,\ }\ \\ { \frac {8}{a}+y_{D}=\frac {8}{a}+\frac {2}{a}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {a}{4},}\ \\ { y_{D}=\frac {2}{a}, } \end{cases}\ $
$將D(\frac{a}{4},\frac{2}{a})代入y =2x,$
$解得a=2,$
$∴A (2,4).\ $
$綜上所述,點A的坐標為(2\sqrt {7} ,\frac{4\sqrt {7} }{7}))或(\frac{2\sqrt {7} }{7},4\sqrt {7} )或(2,4). $