亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第171頁

第171頁

信息發(fā)布者:
90
45或90
$②∵AB⊥AC,AB=2,AC=4,$
$∴BC=2\sqrt {5} .$
$根據(jù)條件可知AD與BC之間的距離h為\frac{4\sqrt {5} }{5}.$
$如圖①,當EF=AC時,四邊形AECF是矩形,$
$AC=4,$
$∴AF= \sqrt{4^{2} -(\frac{4\sqrt {5} }{5})^{2} }=\frac{8\sqrt {5} }{5},$
$∴矩形AECF的面積=AF·h=\frac{32}{5}.$
$如圖②,當EF=BD時,四邊形BEDF是矩形,$
$BD=4\sqrt {2} ,$
$∴DF= \sqrt{(4\sqrt {2} )2-(\frac{4\sqrt {5} }{5})^{2} }=\frac{12\sqrt {15} }{5},$
$∴矩形BEDF的面積=DF·h=\frac{48}{5}.$
$綜上,矩形的面積為\frac{32}{5}或\frac{48}{5.} $
(更多請點擊查看作業(yè)精靈詳解)
$解:將A、C點的坐標代入中點坐標公式,$
$得x_{M} =\frac{-1+3}{2}=1,$
$y_{M}\ = \frac{3+(-1)}{2}=1,$
$∴AC中點M的坐標為(1,1).$
$解:連接AC、BD交于點M.$
$∵四邊形ABCD是平行四邊形,$
$∴M是AC與BD的中點將A(-1,5) ,C(3,3)代入$
$\begin{cases}{x_{M} =\dfrac {x_{A}+x_{C}}{2},}\ \\ {y_{M}=\dfrac {y_{A}+y_{C}}{2}, } \end{cases}\ $
$解得\begin{cases}{x_{M}=1,}\ \\ {y_{M}=4,} \end{cases}\ $
$即點M的坐標為(1,4).設(shè)點D的坐標為(x_{D},y_{D}),$
$由中點坐標公式,得$
$\begin{cases}{x_{M} =\dfrac {x_{B}+x_{D}}{2}, }\ \\ {y_{M}=\dfrac {y_{B}+y_{D}}{2} ,} \end{cases}$
$解得\begin{cases}{x_{D}=4,}\ \\ {y_{D}=6,} \end{cases}$
$即點D的坐標為(4,6).\ $

$解:能設(shè)A(a,\frac{8}{a}),$
$則B(\frac{a}{4},\frac{8}{a}),C(a,\frac{2}{a}).\ $
$①當AB為對角線時,$
$有\(zhòng)begin{cases}{x_{A} +x_{B} =x_{C} +x_{D},}\ \\ {\ y_{A}+y_{B}= y_{C}+y_{D},} \end{cases}\ $
$即\begin{cases}{a+\frac {a}{4}=a+x_{B} ,\ }\ \\ { \frac {8}{a}+\frac {8}{a}=\frac {2}{a}+y_{D}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {a}{4},}\ \\ {\ y_{D}=\frac {14}{a}, } \end{cases}\ $
$將D (\frac{a}{4},\frac{14}{a})代入y=2x,$
$解得a=2\sqrt {7}\ .$
$∴A(2\sqrt {7}, \frac{4\sqrt {7} }{7});$
$②當AC為對角線時,$
$有\(zhòng)begin{cases}{x_{A} +x_{C} =x_{B} +x_{D},}\ \\ { y_{A}+y_{C}= y_{B}+y_{D},} \end{cases}$
$即\ \begin{cases}{a+a=\frac {a}{4}+x_{D} ,\ }\ \\ { \frac {8}{a}+\frac {2}{a}=\frac {8}{a}+y_{D}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {7}{4}a,}\ \\ { y_{D}=\frac {2}{a}, } \end{cases}\ $
$將 D (\frac{7}{4} a,\frac{2}{a} 代入 y=2x,$
$解得a= \frac{2\sqrt {7} }{7},$
$∴A(\frac{2\sqrt {7} }{7},4\sqrt {7} );$
$\ ③當AD為對角線時,$
$有\(zhòng)begin{cases}{x_{A} +x_{D} =x_{B} +x_{C},}\ \\ { y_{A}+y_{D}= y_{B}+y_{C},} \end{cases}$
$即 \begin{cases}{a+x_{D}=\frac {a}{4}+ a,\ }\ \\ { \frac {8}{a}+y_{D}=\frac {8}{a}+\frac {2}{a}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {a}{4},}\ \\ { y_{D}=\frac {2}{a}, } \end{cases}\ $
$將D(\frac{a}{4},\frac{2}{a})代入y =2x,$
$解得a=2,$
$∴A (2,4).\ $
$綜上所述,點A的坐標為(2\sqrt {7} ,\frac{4\sqrt {7} }{7}))或(\frac{2\sqrt {7} }{7},4\sqrt {7} )或(2,4). $