$解:(1)連接AD,交x軸于點(diǎn)E.$
$∵D(1,-2),∴OE=1,ED=2.$
$∵四邊形AODC是菱形,$
$∴AE=DE=2,∴A(1,2).$
$將A(1,2)代入直線y=mx+1可得m+1=2,$
$解得m=1.$
$將A(1,2)代入反比例函數(shù)y= \frac{k}{x} ,$
$可得k=2.$
$(2)∵當(dāng)x=1時(shí),反比例函數(shù)的值為2,$
$∴當(dāng)反比例函數(shù)圖像在A點(diǎn)下方時(shí),$
$對(duì)應(yīng)的函數(shù)值小于2,此時(shí)x的取值范圍$
$是x<0或x>1.$
$(3)∵OC=2OE=2,AD=2DE=4,$
$∴S_{菱形OACD} =\frac{1}{2}OC·AD=4.\ $
$∵S_{△OAP} =S_{菱形OACD} ,∴S_{△OAP}\ =4.$
$設(shè)點(diǎn)P的坐標(biāo)為(0,y),則OP=|y|,$
$∴\frac{1}{2}×|y|×1=4,即|y|=8,$
$解得y=8或y=-8,$
$∴點(diǎn)P的坐標(biāo)為(0,8)或(0,-8).$