$解:(1)∵數(shù)軸上與\sqrt {3} ,\sqrt {5}對應(yīng)的點(diǎn)$
$分別是A 、B,$
$∴ AB=\sqrt {5}-\sqrt {3}\ .\ $
$又 AC=A B,∴\sqrt {3}-x=\sqrt{5}-\sqrt {3},$
$∴x=2\sqrt {3}-\sqrt {5}.$
$(2)∵x=2\sqrt {3}-\sqrt {5},$
$∴x2=(2\sqrt {3}-\sqrt {5})2=17-4\sqrt {15},$
$∴(17+4 \sqrt{15})x2-(2\sqrt {3}+\ \sqrt{5})x-2\ $
$=(17+4\sqrt {15} )(17-4\sqrt {15} )$
$-(2\sqrt {3}+\ \sqrt{5})(2\sqrt {3}- \sqrt{5})-2\ $
$=289-240-12+5-2$
$=40.$