$解:在y=\frac{3}{x}上任取一點(diǎn)A(x,\frac{3}{x}),$
$則點(diǎn)A關(guān)于直線y=x對(duì)稱的 點(diǎn)B為(\frac{3}{x},x).$
$∵y=\frac{3}{\frac {3}{x}}=x,$
$∴點(diǎn)B也在反比例函數(shù)y=\frac{3}{x}的圖像上.$
$∵點(diǎn)A是反比例函數(shù)y=\frac{3}{x}上的任意一點(diǎn),它關(guān)于直線y=x對(duì)稱的點(diǎn)都在反比例函數(shù)y=\frac{3}{x}的圖像上,$
$∴反比例函數(shù)y=\frac{3}{x}的圖像關(guān)于直線y=x對(duì)稱.\ $
$在y=\frac{3}{x}上任取一點(diǎn)A(x,\frac{3}{x}).$
$則點(diǎn)A關(guān)于直線y=-x對(duì)稱的點(diǎn)C為(-\frac{3}{x},-x).$
$∵y=\frac{3}{-\frac {3}{x}}=-x,$
$∴點(diǎn)C也在反比例函數(shù)y=\frac{3}{x}的圖像上.$
$∵點(diǎn)A是反比例函數(shù)y=\frac{3}{x}上的任意一點(diǎn),它關(guān)于直線y=-x對(duì)稱的點(diǎn)都在反比例函數(shù)y=\frac{3}{x}的圖像上,$
$∴反比例函數(shù)y=\frac{3}{x}的圖像關(guān)于直線y=-x對(duì)稱.$