$解:設(shè)點(diǎn)D(m,\frac{2}{m}),則點(diǎn)B(4m,\frac{2}{m}).$
$∵點(diǎn)G與點(diǎn)O關(guān)于點(diǎn)C對(duì) 稱(chēng),$
$∴點(diǎn)G(8m,0),易得點(diǎn)E(4m,\frac{1}{2m}).$
$設(shè)直線DE的函數(shù)表達(dá)式為y=px+n,將點(diǎn)D、E的坐標(biāo)代入,$
$得\begin{cases}{ \frac {2}{m}=mp+n, }\ \\ { \frac {1}{2m}=4mp+n, } \end{cases}\ $
$解得\begin{cases}{ p=-\frac {1}{2m^{2} } }\ \\ { n=\frac {5}{2m}, } \end{cases}\ \ $
$∴直線DE的函數(shù)表達(dá)式為$
$y=-\frac{1}{2m^{2} }x+\frac{5}{2m},\ 令y=0,$
$∴x=5m,$
$∴點(diǎn)F(5m,0).$
$∴FC=8m-5m=3m.$
$又BD=4m-m=3m=FG,且FG//BD,$
$∴四邊形BDFG為平行四邊形.$