$解:(1)①把點(diǎn)B(3,1)代入y_{1}=\frac{k_{1}}{x},$
$得k_{1}=3×1=3,$
$∴y_{1}=\frac{3}{x}.$
$∵函數(shù) y_{1}的圖像過點(diǎn)A(1,m),∴m=3,$
$∴將點(diǎn)A(1,3)、B(3,1)代入 y_{2}=k_{2}x+b,$
$得\begin{cases}{ 3=k_{2}+b, }\ \\ { 1=3k_{2}+b, } \end{cases} 解得\begin{cases}{ k_{2}=-1, }\ \\ { b=4. } \end{cases}\ $
$∴y_{2}=-x+4\ $
$②當(dāng)2<x<3時(shí),y_{1}<y_{2}.$
$(2)∵點(diǎn)C(2,n)在函數(shù)y_{1}的圖像上,$
$∴k_{1}=2n.$
$∵點(diǎn)C先向下平移2個(gè)單位,再向左平移4$
$個(gè)單位,得點(diǎn)D,∴點(diǎn)D的坐標(biāo)為(-2,n-2).$
$∵點(diǎn)D恰好落在函數(shù)y_{1} 的圖像上,$
$∴k_{1}=-2(n-2),$
$ ∴2n=-2(n-2),解得n=1.$