$解:①∵點(diǎn)M為直線AC與y軸的交點(diǎn),$
$∴M(0,\frac{5}{2}),$
$∴OM= \frac{5}{2},$
$∴MH=OH-OM=\frac{3}{2}.$
$∵四邊形ABCO是菱形,$
$∴BC=OC,∠BCM=∠OCM.$
$∵CM=CM,$
$∴△BCM≌△OCM,$
$∴∠MBC=∠MOC=90°,$
$BM=OM=\frac{5}{2}.$
$當(dāng)點(diǎn)P在AB上時(shí),0≤t<\frac{5}{2}.$
$∵AP=2t,$
$∴BP=5-2t,$
$∴S=\frac{1}{2}·HM·BP=\frac{1}{2}×\frac{3}{2}×(5-2t)=-\frac{3}{2}t+\frac{15}{4};$
$當(dāng)點(diǎn)P在BC上時(shí),\frac{5}{2}<t≤5,BP=2t-5,$
$∴S=\frac{1}{2}·BM·BP=\frac{1}{2}× \frac{5}{2}×(2t-5)=\frac{5}{2}t-\frac{25}{4}.$
$綜上所述,S與t之間的函數(shù)表達(dá)式為$
$S=\begin{cases}{ -\dfrac {3}{2}t+\dfrac {15}{4}(0≤t<\dfrac {5}{2}), }\ \\ { \dfrac {5}{2}t-\dfrac {25}{4}(\dfrac {5}{2}<t≤5). } \end{cases}\ $
$②根據(jù)題意可得,\ $
$當(dāng)S=2時(shí),-\frac {3}{2}t+\frac {15}{4}=2$
$或\frac {5}{2}t-\frac {25}{4}=2,$
$解得t=\frac{7}{6}或t=\frac{33}{10}.$