亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第69頁(yè)

第69頁(yè)

信息發(fā)布者:
5
45
$解:(2)∵四邊形ABCO是菱形,$
$∴AB=OC=OA=5,AB//OC,$
$∴B(2, 4),C(5,0),設(shè)直線AC的表達(dá)式為$
$y=kx+b,把A(-3,4),C(5,0)代入得,\ $
$\begin{cases}{-3k+b=4,\ }\ \\ {5k+b=0,\ } \end{cases}解得\begin{cases}{ k=-\frac {1}{2}, }\ \\ { b=\frac {5}{2}, } \end{cases}$
$∴直線AC的表達(dá)式為y=-\frac {1}{2}x+\frac {5}{2}.$
(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)
$解:(4)DN=\frac{1}{4}.$
$ (更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)$
$解:①∵點(diǎn)M為直線AC與y軸的交點(diǎn),$
$∴M(0,\frac{5}{2}),$
$∴OM= \frac{5}{2},$
$∴MH=OH-OM=\frac{3}{2}.$
$∵四邊形ABCO是菱形,$
$∴BC=OC,∠BCM=∠OCM.$
$∵CM=CM,$
$∴△BCM≌△OCM,$
$∴∠MBC=∠MOC=90°,$
$BM=OM=\frac{5}{2}.$
$當(dāng)點(diǎn)P在AB上時(shí),0≤t<\frac{5}{2}.$
$∵AP=2t,$
$∴BP=5-2t,$
$∴S=\frac{1}{2}·HM·BP=\frac{1}{2}×\frac{3}{2}×(5-2t)=-\frac{3}{2}t+\frac{15}{4};$
$當(dāng)點(diǎn)P在BC上時(shí),\frac{5}{2}<t≤5,BP=2t-5,$
$∴S=\frac{1}{2}·BM·BP=\frac{1}{2}× \frac{5}{2}×(2t-5)=\frac{5}{2}t-\frac{25}{4}.$
$綜上所述,S與t之間的函數(shù)表達(dá)式為$
$S=\begin{cases}{ -\dfrac {3}{2}t+\dfrac {15}{4}(0≤t<\dfrac {5}{2}), }\ \\ { \dfrac {5}{2}t-\dfrac {25}{4}(\dfrac {5}{2}<t≤5). } \end{cases}\ $
$②根據(jù)題意可得,\ $
$當(dāng)S=2時(shí),-\frac {3}{2}t+\frac {15}{4}=2$
$或\frac {5}{2}t-\frac {25}{4}=2,$
$解得t=\frac{7}{6}或t=\frac{33}{10}.$
$解:AE=MN.理由:$
$∵四邊形ABCD是正方形,$
$∴∠ABE=∠BCD=90°,AB=BC,AB//CD.$
$過(guò)點(diǎn)B作BF//MN交CD于點(diǎn)F,$
$如圖①所示,$
$∴四邊形MBFN為平行四邊形,$
$∴MN=BF,BF⊥AE,$
$∴∠ABF+∠BAE=90°.$
$∵∠ABF+∠CBF=90°,$
$∴∠BAE=∠CBF.$
$在△ABE和△BCF中,$
$\begin{cases}{\ ∠BAE=∠CBF,}\ \\ {AB=BC,\ } \\{∠ABE=∠BCF,}\end{cases}\ $
$∴△ABE≌△BCF(ASA),$
$∴AE=BF,$
$∴AE=MN.\ $

$解:EQ=CQ.理由:如圖②,連接AQ、CQ,在△ABQ和△CBQ中,$
$\begin{cases}{ AB=CB, }\ \\ {∠ABQ=∠CBQ,\ } \\{BQ=BQ,}\end{cases}\ $
$∴△ABQ≌△CBQ,$
$∴AQ=CQ.$
$∵M(jìn)N⊥AE,垂足為點(diǎn)P,P為AE中點(diǎn),$
$∴AQ=EQ,$
$∴EQ=CQ.$