解:??$(2)①$??設點??$P$??的橫坐標為??$m,$??則??$S_{△PBO}=\frac 12BO ·m=2m$??
??$ ∵S_{△ODE}=S_{梯形EOAC}-S_{△CDE}-S_{△ODA}$??
??$ =\frac 12×(3+6)×4-\frac 12×3×2-\frac 12×6×2=9$??
又??$∵S_{△PBO}=\frac 89S_{△ODE}$??
??$ ∴S_{△PBO}=8,$??即??$2m=8,$????$m=4$??
∵點??$P$??在雙曲線??$y=\frac {12}x$??上
∴點??$P$??的坐標為??$(4,$????$3)$??
②由①知,滿足??$S_{△PBO}=\frac 89S_{△ODE}$??的點??$P$??在橫坐標為??$4$??的直線上
即點??$P $??在直線??$x=4$??上
當??$O、$????$P、$????$E$??三點共線時,??$PO-PE$??的值最大
設??$OE$??的解析式為??$y=k_1x$??
∵過點??$E(3,$????$4)$??
??$∴4=3k_1,$????$k_1=\frac 43$??
??$ ∴OE$??的解析式為??$y=\frac 43x$??
當??$x=4$??時,??$y=\frac {16}3$??
∴點??$P$??的坐標為??$(4,$????$\frac {16}3)$??
??$ ③ Q_1(4,$????$4+2 \sqrt{3}) 、$????$ Q_2(4,$????$2 \sqrt{3}) 、$????$ Q_3(4,$????$-2 \sqrt{3}) 、$????$ Q_4(8,$????$2) $?
?