亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第50頁

第50頁

信息發(fā)布者:
A
y=-4x-5
y=-4x+13
x>-2
解???$:(1)$???把???$ x=5 $???代入???$ y=3 x+5 $???中得???$: y=3 ×5+5= 20 ;$???
???$(2) $???∵???$y=3 x+5 $???∴???$3 x=y-5 $???∴???$x=\frac {1}{3} y-\frac {5}{3} . $???
當???$ y=-1 $???時???$, x=\frac {1}{3} x(-1)-\frac {5}{3}=-2 ;$???
???$(3) $???由題意知???$: 3 x+5=6 x-1 $???解得???$: x=2 $???
即當???$ x =2 $???時, 函數(shù)???$ y=3 x+5 $???與???$ y=6 x-1 $???有相同的函數(shù)值.

?$解:設一次函數(shù)\ y=k x+b\ 的圖象與\ x\ 軸交點的坐標為\ (a, 0) ,$?
?$又其交點的縱坐標是 -2 ,$?
?$\therefore \frac{1}{2} \times|a| \times|-2|=1,\ $?
?$\therefore|a|=1,\ $?
?$\therefore a= \pm 1,$?
?$即圖象與\ x\ 軸交點的坐標為\ (1,0)\ 或\ (-1,0)\ 。$?
?$(1)當圖象與坐標軸的交點是\ (1,0)\ 和\ (0,-2) 時,$?
?$\left\{\begin{array} { l } { k + b = 0 } \\{ b = - 2 }\end{array} \text { , 解得: } \left\{\begin{array}{l}k=2 \\b=-2\end{array},\right.\right.\ $?
?$\therefore y=2 x-2 ;$?
?$(2) 當圖象與坐標軸的交點是\ (-1,0)\ 和\ (0,-2)\ 時,$?
?$\left\{\begin{array} { l } { - k + b = 0 } \\{ b = - 2 }\end{array} \text { ,解得: } \left\{\begin{array}{l}k=-2 \\b=-2\end{array},\right.\right.\ $?
?$\therefore y=-2 x-2 .$?
?$故答案為:\ y=2 x-2 , 或\ y=-2 x-2 .$?
?$ $?
?$ $?
解:由已知可得?$y=1.99(2+x)=1.99 x+3.98 $?
?$\begin {cases}{x \geq 0 }\\{2+x \leq 10}\end {cases}$?
?$\text { 解得 } 0 \leq x \leq 8$?

解:把?$ P(4,3) $?代入?$ y_1=k_1 x $?得?$: 4\ \mathrm {k}_1=3 , $?即?$ k_1=\frac {3}{4} ,$?
則正比例函數(shù)是?$ y_1=\frac {3}{4} x ;$?
把?$ (4,3) $?代入?$ y_2=k_2 x+b ,$?
得?$: 4\ \mathrm {k}_2+b=3① ,$?
∵?$P(4,3) \text {, }$?
 ∴  根據(jù)勾股定理, 得?$ {OP}=5 ,$?
∴?${OQ}={OP}=5, $?
∴?$=-5,$?
把?$ b=-5 $?代入①, 得?$ k=2 ,$?
則一次函數(shù)解析式是?$ y_2=2 {x}-5 .$?
故答案為?$:y_1=\frac {3}{4} x, y_2=2 x-5$?