解: ∵?${ABCD} $?為 平行四邊形, ∴?${AB}\ \mathrm {/} / {CD}, {AD}\ \mathrm {/} / {BC} , $?
又 ∵?$E F / / B C, $?∴?$E F / / A D / / B C, $?
∴ 四邊形?$ B C F E $?與四邊形?$ADFE$?為 平行四邊形,
∵?$E C 、$??$ F B $?為?$ \square BCFE$?的對(duì)角線, ∴?$F H=B H , $?即?$ H $?為?$ F B $?的中點(diǎn),
又 ∵?$A F 、$??$ D E $?為?$ \square A D F E $?的對(duì)角線, ∴?$F G=A G , $?即?$ G $?為?$FA$?的中點(diǎn),
∴?$G H $?為?$ \triangle F A B $?的中位線, ∴?$G H =\frac {1}{2}\ \mathrm {A} B .$?