解: ∵?${ABCD} $?為 平行四邊形 , 點(diǎn)?$ {O} $?為?$ {AC}, {BD} $?的交點(diǎn),
∴?${OA}= {OC}, ∠{AOE}=∠{COF} $?
又 ∵?${AE}\ \mathrm {//}{CF}, $?∴?$∠{AEO}=∠{CFO} ,$?
∴?$\triangle {AEO} \cong \triangle {CFO}({AAS}) $?
∴?${OE}={OF}, {OA}={OC} ,$?
∴?${AC} $?與?$ {EF} $?互相平分.