證明?$: (1) $?∵ 菱形?$ A B C D, $?∴?$A B=A D, ∠B=∠D $?
?$\text { 又 } $?∵?$A E \perp B C, A F \perp C D $?
∴?$∠A E B=∠A F D=90° .$?
在?$ \triangle A E B $?和?$ \triangle A F D $?中
?$\begin {cases}{∠B=∠D }\\{∠A E B=∠A F D }\\{A B=A D}\end {cases}$?
∴?$\triangle A B E \cong \triangle A D F(\mathrm{AAS}), $?∴?$A E=A F .$?
?$(2) $?∵ 菱形?$ A B C D \quad $?∴?$∠B+∠B A D=180° $?
而?$ ∠B=60° $?∴?$∠B A D=120° ,$?
?$\text { 又 } $?∵?$∠A E B=90°, ∠B=60° $?
∴?$∠B A E=30°$?
由?$ (1) $?知?$ \triangle A B E \cong \triangle A D F $?
∴?$∠B A E=∠D A F=30° $?
∴?$∠E A F=120°-30°-30°=60°$?
∴?$\triangle A E F $?等邊 ,
∴?$∠A E F=60°$?