解:?$(2)$?存在,過?$B'$?作?$MN//AB,$?交?$AD,$??$BC$?于點?$M,$??$N,$?
過?$E$?作?$EH//AD,$?交?$MN$?于?$H,$?
∵?$AD//BC,$??$MN//AB,$?
∴四邊形?$ABNM$?是平行四邊形,
又∵?$∠A=90°,$?
∴四邊形?$ABNM$?是矩形,
同理可得:四邊形?$AEHM$?是矩形.
①如圖?$1,$?若點?$B'$?在?$AD$?下方,則?$B'M=3\ \mathrm {cm},$??$B'N=3\ \mathrm {cm},$?
∵?$MH=AE=1(\mathrm {cm}),$?
∴?$B'H=2(\mathrm {cm}),$?
由折疊可得,?$EB'=EB=5(\mathrm {cm}),$?
∴?$Rt△EB'H$?中,?$EH=\sqrt {52-22}=\sqrt {21}(\mathrm {cm}),$?
∴?$BN=AM=EH=\sqrt {21}(\mathrm {cm}),$?
∵?$BP=t,$?
∴?$PB'=t,$??$PN=\sqrt {21}-t,$?
∵?$Rt△PB'N$?中,?$B'P2=PN2+B'N2,$?
∴?$t2=(\sqrt {21}-t)2+32,$?
解得?$t=\frac {5\sqrt {21}}{7}.$?
②如圖?$2,$?若點?$B'$?在?$AD$?上方,則?$B'M=3\ \mathrm {cm},$??$B'N=9\ \mathrm {cm},$?
同理可得,?$EH=3\ \mathrm {cm},$?
∵?$BP=t,$?∴?$B'P=t,$??$PN=t﹣3,$?
∵?$Rt△PB'N$?中,?$B'P2=PN2+B'N2,$?
∴?$t2=(t-3)2+92,$?
解得?$t=15.$?
綜上所述,?$t$?的值為?$\frac {5\sqrt {21}}{7}$?秒或?$15$?秒.