解:?$ (1) \angle B E C=\angle A B E+\angle A C E+\angle B A C $?
∵?$\angle B E D 、$??$ \angle D E C $?分別是?$ \triangle A B E 、$??$ \triangle A C E $?的外角 (已知)
∴?$\angle B E D=\angle A B E+\angle B A E,$??$ \angle D E C=\angle A C E+\angle C A E ($?三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和)
∴?$\angle B E D+\angle D E C=\angle A B E+\angle B A E+\angle A C E+\angle C A E ($?等式性質(zhì)),
即?$ \angle B E C=\angle A B E+\angle A C E+\angle B A C. $?
?$(2)$?當(dāng)點(diǎn)?$ E $?在線段?$ DA $?上時(shí),?$ \angle B E C=\angle A B E+\angle A C E+\angle B A C$?
當(dāng)點(diǎn)?$ E $?在線段?$ D A $?的延長(zhǎng)線上時(shí),?$ \angle B A C=A B E+\angle A C E+\angle B E C$?
當(dāng)點(diǎn)?$ E $?在線段?$ A D $?的延長(zhǎng)線上時(shí),?$ \angle B A C+\angle A B E+\angle A C E+\angle B E C=360°.$?
若選擇“當(dāng)點(diǎn)?$ E $?在線段?$ A D $?的延長(zhǎng)線上時(shí),?$ \angle B A C+ \angle A B E+\angle A C E+\angle B E C=360° ”,$? 如圖
∵在?$ \triangle A B C$?中,?$ \angle A B C+\angle A C B+\angle B A C=180°$?
在?$△BCE$?中,?$∠BEC+∠CBE+∠BCE=180°($?三角形三個(gè)內(nèi)角的和等于?$180°)$?
∴?$∠ABC+∠ACB+∠BAC+∠BEC+∠CBE+∠BCE=360°($?等式的性質(zhì))
即?$∠BAC+∠ABE+∠ACE+∠BEC=360°$?