解:?$(2)$?設(shè)?$△ABC$?的姊妹三角形為?$△DEF,$?且?$DE=DF,$?如圖
∵在?$△ABC$?中,?$AB=AC,$??$∠A=30°,$??$BC=\sqrt 6-\sqrt 2$?
∴?$∠B=∠C=75°$?
過點?$B$?作?$BG⊥AC,$?垂足為點?$G,$?設(shè)?$BG=x,$?則?$AB=AC=2x,$??$AG=\sqrt 3x$?
∴?$CG=AC-AG=2x-\sqrt 3x=(2-\sqrt 3)x$?
在?$Rt△BGC$?中,?$BG^2+CG^2=BC^2$?
∴?$x^2+(2-\sqrt 3)^2x^2=(\sqrt 6-\sqrt 2)^2$?
∴?$x=1$?
∴?$AB=AC=2$?
?$①∠D=∠ABC=75°,$??$DE=DF=BC=\sqrt 6-\sqrt 2$?
②當(dāng)?$∠E=∠A=30°$?時,?$∠EDF=120°,$??$EF=AB=2,$?如圖
過點?$D$?作?$DH⊥EF,$?垂足為點?$H$?
∵?$DE=DF$?
∴?$EH=\frac 12EF=1$?
∴?$ED=\frac {EH}{cos 30°}=\frac {2\sqrt 3}3$?
∴?$△ABC$?的姊妹三角形的頂角為?$75°$?時,腰長為?$\sqrt 6-\sqrt 2$?
頂角為?$120°$?時,腰長為?$\frac {2\sqrt 3}3$?