亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第52頁

第52頁

信息發(fā)布者:
證明:∵?$△ABC∽△A'B'C'$?
又?$AD、$??$BE$?是?$△ABC$?的高,?$A'D'、$??$B'E'$?是?$△A'B'C'$?的高
∴?$\frac {AD}{A'D'}=\frac {AB}{A'B'},$??$\frac {BE}{B'E'}=\frac {AB}{A'B'}$?
∴?$\frac {AD}{A'D'}=\frac {BE}{B'E'}$?
解:連接?$AP$?并延長交?$BC$?于點(diǎn)?$D$?
∵點(diǎn)?$P$?為?$△ABC$?的重心
∴?$\frac {AP}{AD}=\frac 23$?
∵?$EF//BC$?
∴?$△AEP∽△ABD,$??$△AEF∽△ABC$?
∴?$\frac {AE}{AB}=\frac {AP}{AD}=\frac 23$?
∴?$\frac {EF}{BC}=\frac {AE}{AB}=\frac 23$?

解:∵?$DG//AB、$??$QH//BC $?
∴?$△PKQ∽△DPE$?
∴?$\frac {S_{△KQP}}{S_{△PDE}}=(\frac {KP}{PE})^2=\frac 4{16}$?
∴?$\frac {KP}{PE}=\frac 12 $?
∴?$\frac {KP}{KE}=\frac 13$?
又∵?$△KQP∽△KBE$?
∴?$\frac {S_{△KQP}}{S_{△KBE}}=(\frac {KP}{KE})^2=(\frac 13)^2=\frac 19$?
∴?$\frac {4}{S_{△KBE}}=\frac 19 $?
∴?$S_{△KBE}=36$?
∴?$S_{四邊形BDPQ}=S_{△KBE}-S_{△KQP}-S_{△PDE}=36-4-16=16$?
同理可求得?$S_{四邊形CEPH}=24,$??$S_{四邊形AKPG}=12$?
∴?$S_{△ABC}=16+12+24+16+9+4=81$?

證明:如圖四邊形?$ABCD∽$?四邊形?$A'B'C'D'$?
設(shè)相似比為?$k,$?則?$\frac {AD}{A'D'}=\frac {DC}{D'C'}=k,$??$∠D=∠D'$?
∴?$△ADC∽△A'D'C'$?
∴?$\frac {AC}{A'C'}=\frac {AD}{A'D'}=k$?
命題得證

解:它們對(duì)應(yīng)頂點(diǎn)相連形成的直線交于一點(diǎn)