解:∵?$DG//AB、$??$QH//BC $?
∴?$△PKQ∽△DPE$?
∴?$\frac {S_{△KQP}}{S_{△PDE}}=(\frac {KP}{PE})^2=\frac 4{16}$?
∴?$\frac {KP}{PE}=\frac 12 $?
∴?$\frac {KP}{KE}=\frac 13$?
又∵?$△KQP∽△KBE$?
∴?$\frac {S_{△KQP}}{S_{△KBE}}=(\frac {KP}{KE})^2=(\frac 13)^2=\frac 19$?
∴?$\frac {4}{S_{△KBE}}=\frac 19 $?
∴?$S_{△KBE}=36$?
∴?$S_{四邊形BDPQ}=S_{△KBE}-S_{△KQP}-S_{△PDE}=36-4-16=16$?
同理可求得?$S_{四邊形CEPH}=24,$??$S_{四邊形AKPG}=12$?
∴?$S_{△ABC}=16+12+24+16+9+4=81$?