解:?$\sqrt 3-\sqrt 2<\sqrt 2-1,$??$\sqrt 4-\sqrt 3<\sqrt 3-\sqrt 2,$??$\sqrt 5-\sqrt 4<\sqrt 4-\sqrt 3$?
猜想:?$\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}(n$?是大于等于?$1$?的正整數(shù))
證明:?$\sqrt {n+1}-\sqrt {n}=\frac {(\sqrt {n+1}-\sqrt n)(\sqrt {n+1}+\sqrt n)}{\sqrt {n+1}+\sqrt n}=\frac 1{\sqrt {n+1}+\sqrt n}$?
?$\sqrt n-\sqrt {n-1}=\frac {(\sqrt n-\sqrt {n-1})(\sqrt n+\sqrt {n-1})}{\sqrt n+\sqrt {n-1}}=\frac 1{\sqrt n+\sqrt {n-1}}$?
∵?$\sqrt {n+1}+\sqrt n>\sqrt n+\sqrt {n-1}$?
∴?$\frac 1{\sqrt {n+1}+\sqrt n}<\frac 1{\sqrt n+\sqrt {n-1}}$?
∴?$\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}$?