解:?$(2)$?把?$x=k$?代入?$y=-x-1,$?得?$y=-k-1,$?
則?$A_1$?的坐標(biāo)是?$(k,$??$-k-1);$?
把?$x=k$?代入?$y=\frac {1}{x}$?得:?$y=\frac {1}{k},$?
則?$B_1$?的坐標(biāo)是?$(k,$??$\frac {1}{k});$?
把?$y=\frac {1}{k}$?代入?$y=-x-1$?得:?$\frac {1}{k}=-x-1$?
解得:?$x=-\frac {k+1}{k},$?即?$A_2$?的坐標(biāo)是?$(-\frac {k+1}{k},$??$\frac {1}{k});$?
把?$x=-\frac {k+1}{k}$?代入?$y=\frac {1}{x}$?得:?$y=-\frac {k}{k+1}$?
則?$B_2$?的坐標(biāo)是?$(-\frac {k+1}{k},$??$-\frac {k}{k+1})$?
把?$y=-\frac {k}{k+1}$?代入?$y=-x-1,$?得:?$x=-\frac {1}{k+1}$?
即?$A_3$?的坐標(biāo)是?$(-\frac {1}{k+1},$??$-\frac {k}{k+1});$?
把?$x=-\frac {1}{k+1}$?代入?$y=\frac {1}{x}$?得:?$y=-k-1$?
則?$B_3$?的坐標(biāo)是?$(-\frac {1}{k+1},$??$-k-1)$?
把?$y=k+1$?代入?$y=-x-1$?得?$x=k,$?則?$A_4$?的坐標(biāo)是?$(k,$??$-k-1),$?即?$A_1$?
則點?$A_{n}$?的橫坐標(biāo)分別是:?$k,$??$-\frac {k+1}{k},$??$-\frac {1}{k+1},$?···三個循環(huán)一次