亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第122頁

第122頁

信息發(fā)布者:
??$(1)$??若??$∠PAB=90°$??
則??$P$??點(diǎn)的橫坐標(biāo)為??$-2,$??代入??$y=\frac {1} {2}x+\frac {5} {2}$??
解得:??$y=\frac {3} {2},$??則??$P(-2,$????$\frac {3} {2})$??
??$(2)$??若??$∠PBA=90°$??
則??$P$??點(diǎn)的橫坐標(biāo)為??$4,$??代入??$y=\frac {1} {2}x+\frac {5} {2}$??
解得:??$y=\frac {9} {2},$??則??$P(4,$????$\frac {9} {2})$??
??$(3)$??若??$∠APB=90°,$??則設(shè)??$P(x,$????$\frac 12x+\frac {5}{2})$??
在直角三角形中??$PA^2+PB^2=AB^2$??
∴??$(x+2)^2+(\frac x{2}+\frac 52)^2+(x-4)^2+(\frac x{2}+\frac 52)^2=6^2$??
??$x_1= 1 ,$????$x_2=-\frac {7}{5}$??
∴??$P(1,$????$3)$??或??$P(-\frac {7}{5},$????$\frac {9}{5})$??
綜上所述點(diǎn)??$P$??的坐標(biāo)為:??$(-2,$????$\frac {3} {2}),$????$(4,$????$\frac 92),$????$(1,$????$3),$????$(-\frac {7}{5},$????$\frac {9}{5})$??
解:①以?$OA$?為公共邊
?$B_1(0,$??$-3)、$??$B_2(4,$??$-3)、$??$B_3(4,$??$3)$?
②以?$OB$?為公共邊
?$A_1(-4,$??$0)、$??$A_2(-4,$??$3)、$??$A_3(4,$??$3)$?
③以?$AB$?為公共邊
設(shè)未知頂點(diǎn)坐標(biāo)為?$C(m,$??$n)$?
∵?$∠BCA=90°$?
∴點(diǎn)?$C$?到線段?$ABDE$?中點(diǎn)?$(2,$??$\frac 32)$?的距離為?$\frac 12AB=\frac 52$?
∴?$(m-2)^2+(n-\frac 32)^2=(\frac 52)^2$?
化簡得?$\mathrm {m^2}+n^2=4m+3n①$?
當(dāng)?$BC=4,$??$AC=3$?時
?$\begin{cases}{(m-0)^2+(n-3)^2=4^2}\\{(m-4)^2+(n-0)^2=3^2}\end{cases}$?
化簡之后得?$4m-3n=7,$?∴?$n=\frac {4m-7}3$?
將?$n=\frac {4m-7}3$?代入①解方程得?$m_1=4,$??$m_2=\frac {28}{25}$?
∴?$C(4,$??$3)$?或?$C(\frac {28}{25},$??$-\frac {21}{25})$?
當(dāng)?$BC=3,$??$AC=4$?時
?$\begin{cases}{(m-0)^2+(n-3)^2=3^2}\\{(m-4)^2+(n-0)^2=4^2}\end{cases}$?
化簡之后得?$6n=8m,$??$n=\frac 43m$?
將?$n=\frac 43m$?代入①解方程得?$m_3=0,$??$m_4=\frac {72}{25}$?
當(dāng)?$m_3=0$?時,點(diǎn)?$C$?與點(diǎn)?$O$?重合,故舍去
∴?$C(\frac {72}{25},$??$\frac {96}{25})$?
綜上所述,這個直角三角形的未知頂點(diǎn)坐標(biāo)為?$(0,$??$-3)、$??$(4,$??$-3)、$??$(4,$??$3)、$?
?$(-4,$??$0)、$??$(-4,$??$3)、$??$(\frac {28}{25},$??$-\frac {21}{25})、$??$(\frac {72}{25},$??$\frac {96}{25})$?