解:連接?$AO$?并延長(zhǎng)交?$\odot O$?于點(diǎn)?$F,$?連接?$BC、$??$BF、$??$DF、$??$AD$?
∵?$AF$?是直徑
∴?$∠ADF=90°,$??$∠ABF=90°,$??$AB⊥BF$?
∵?$AB⊥CD$?
∴?$BF//CD$?
∴?$\widehat{BC}=\widehat{DF}$?
∴?$BC=DF$?
在?$Rt△AED、$??$Rt△BCE、$??$Rt△ADF$?中
?$AE^2+DE^2=AD^2,$??$CE^2+BE^2=BC^2=DF^2,$??$AD^2+DF^2=AF^2$?
∴?$AE^2+BE^2+CE^2+DE^2=AD^2+DF^2=AF^2$?
∵?$AF$?是直徑
∴?$AF=2,$??$AF^2=4$?
∴?$AE^2+BE^2+CE^2+DE^2=4$?