解: 由三角形的外角性質(zhì)?$, \angle D A C=\angle B+\angle A C B ,\angle A C E=\angle B+\angle B A C , $?
∵?$P A, P C $?分別是?$ \angle D A C $?和?$ \angle A C E $?的角平分線,
∴?$\angle P A C=\frac {1}{2} \angle D A C=\frac {1}{2}(\angle B+\angle A C B), \angle P C A=\frac {1}{2} \angle A C E=\frac {1}{2}(\angle B+\angle B A C),$?
在?$ \triangle A C P $?中?$, \angle P+\angle P A C+\angle P C A=180° ,$?
∴?$\angle P+\frac {1}{2}(\angle B+\angle A C B)+\frac {1}{2}(\angle B+\angle B A C)=180°$?
∴?$2 \angle P+\angle B+\angle A C B+\angle B+\angle B A C=360°,$?
在?$ \triangle A B C $?中?$, \angle A C B+\angle B+\angle B A C=180° ,$?
∴?$2 \angle P+\angle B=180°, $?
∴?$\angle P=90°-\frac {1}{2} \angle B .$?