亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第109頁(yè)

第109頁(yè)

信息發(fā)布者:
證明:如圖,連接?$AO$?并延長(zhǎng). 、
∵?$ ∠3$?是?$△ABO$?的外角,∴?$ ∠3=∠1+∠B①. $?
∵?$ ∠4$?是?$△AOC$?的外角,∴?$ ∠4=∠2+∠C②.$?
①+②得,?$∠3+∠4=∠1+∠B+∠2+∠C,$?即?$∠BOC=∠BAC+∠B+∠C$?


130°
130°
130°
解?$: (4) ∠BIC=90°+ \frac {1}{2}\ \mathrm {n}° $?
∵?$ BI、$??$CI$?分別平分?$∠ABC、$??$∠ACB,$?∴?$ ∠IBC=\frac {1}{2} ∠ABC,$??$∠ICB=\frac {1}{2} ∠ACB. $?
∴:?$∠IBC+∠ICB=\frac {1}{2} ∠ABC+ \frac {1}{2} ∠ACB=\frac {1}{2} (∠ABC+∠ACB). $?
∵ 在?$△ABC$?中,?$∠ABC+∠ACB+∠A=180°,$?∴?$ ∠ABC+∠ACB=180°-∠A. $?
∴?$ ∠IBC+∠ICB=\frac {1}{2} (180°$?一?$∠A)=90°- \frac {1}{2} ∠A. $?
∵ 在?$△BIC$?中,?$∠BIC+∠IBC+∠ICB=180°,$?
∴?$∠BIC=180°-(∠IBC+∠ICB)=180°-(90°-\frac {1}{2}∠A ) =90°+ \frac {1}{2} ∠A=90°+ \frac {1}{2}\ \mathrm {n}° $?

解:設(shè)?$ \angle A B C=2 x, \angle A C E=2 y .$?
 ∵?$D $?是?$ \angle A B C $?的平分線與?$ \angle A C E $?的平分線的交點(diǎn),  ∴?$\angle D B E=\frac {1}{2} \angle A B C= x, \angle D C E=\frac {1}{2} \angle A C E=y . $?
∵?$\angle A C E 、$??$ \angle D C E $?分別是?$ \triangle A B C 、$??$ \triangle D B C $?的外角,  ∴?$\angle A C E=\angle A+\angle A B C , \angle D C E=\angle D+\angle D B E . $?
∴?$2 y=\angle A+2 x①,y=\angle D+x②. $?
?$② ×2- ① $?得?$, 0=2 \angle D-\angle A , $?即?$ \angle D=\frac {1}{2} \angle A $?

解: 由三角形的外角性質(zhì)?$, \angle D A C=\angle B+\angle A C B ,\angle A C E=\angle B+\angle B A C , $?
∵?$P A, P C $?分別是?$ \angle D A C $?和?$ \angle A C E $?的角平分線,
∴?$\angle P A C=\frac {1}{2} \angle D A C=\frac {1}{2}(\angle B+\angle A C B), \angle P C A=\frac {1}{2} \angle A C E=\frac {1}{2}(\angle B+\angle B A C),$?
在?$ \triangle A C P $?中?$, \angle P+\angle P A C+\angle P C A=180° ,$?
∴?$\angle P+\frac {1}{2}(\angle B+\angle A C B)+\frac {1}{2}(\angle B+\angle B A C)=180°$?
∴?$2 \angle P+\angle B+\angle A C B+\angle B+\angle B A C=360°,$?
在?$ \triangle A B C $?中?$, \angle A C B+\angle B+\angle B A C=180° ,$?
∴?$2 \angle P+\angle B=180°, $?
∴?$\angle P=90°-\frac {1}{2} \angle B .$?