證明:?$(1)$?∵四邊形?$ABCD$?為正方形,
∴?$AB =AD=6,$??$∠DAB= 90°.$?
在?$Rt△ADE$?中,?$AD=6,$??$AE=AB+BE=6+2=8,$?
∴?$DE=\sqrt {6^2+8^2}=10$?
∵?$AF⊥DE,$?
∴?$\frac 12\ \mathrm {AF}×DE=\frac 12\ \mathrm {AD}×AE.$?
∴?$AF=\frac {6×8}{10}=4.8 $?
?$ (2)$?如圖,連接?$AC$?交?$DE$?于點(diǎn)?$P,$?連接?$PB.$?
∵四邊形?$ABCD$?為正方形,
∴?$AD=CD=CB,$??$∠BAD=∠ADC= 90°,$?
?$ ∠ADB=∠DCA=∠BCA=45°.$?
在?$△CBP $?和?$△CDP $?中,
?$ \begin{cases}{CB=CD }\\{∠BCP=∠DCP} \\{CP=CP} \end{cases}$?
∴?$△CBP≌△CDP(\mathrm {SAS})$?
∴?$PB = PD,$??$∠CBP =∠CDP.$?
∵?$∠NAB=∠ADE,$?
∴?$90°+∠NAB=90°-∠ADE,$?
即?$∠DAN =∠CDP.$?
在?$△DAN$?和?$△CDP $?中,
?$ \begin{cases}{∠ADN=∠DCP }\\{DA=CD} \\{∠DAN=∠CDP} \end{cases}$?
∴?$△DAN≌△CDP (\mathrm {ASA}).$?
∴?$AN=DP$?
∵?$∠CBP=∠CDP=∠DAN$?
∴?$EBP=∠MAN,$?
∵?$BP=DP,$??$DP=AN,$?
∴?$BP=AN.$?
在?$△BEP $?和?$△AMN$?中
?$ \begin{cases}{BP=AN }\\{∠EBP=∠MAN} \\{BE=AM} \end{cases}$?
∴?$△BEP≌△AMN(\mathrm {SAS})$?
∴?$EP= MN $?
∴?$DE=DP+EP=AN+MN.$?