解:?$(1)$?∵四邊形?$ABCD$?是矩形,
∴?$AD= BC=6\ \mathrm {cm},$??$CD= AB=12\ \mathrm {cm}.$?
由題意得?$AP=2t\ \mathrm {cm},$??$DQ=2t\ \mathrm {cm},$?
∴?$AQ=AD- DQ=(6- 2t)\ \mathrm {cm} $?
∴?$AQ=AP,$?
即?$2t=6-2t,$?
解得?$t=\frac 32$?
當(dāng)?$t= \frac 32$?時(shí),?$△QAP $?為等腰直角三角形
?$ (2)$?分三種情況:①當(dāng)?$0≤t≤3$?時(shí),如圖①,
由題意得?$AP=2t\ \mathrm {cm},$??$DQ=2t\ \mathrm {cm},$?
∴?$AQ=AD-DQ=(6-2t)\ \mathrm {cm},$??$BP=(12-2t)\ \mathrm {CM}.$?
∴?$S_{△CPQ}=S_{矩形ABCD}-S_{△BCP}-S_{△CDQ}$?
?$ =12×6-\frac 12×2t×(6-2t)-\frac 12×(12- 2t)×6-\frac 12×12×2t$?
?$ =(2t2-12t+36)\ \mathrm {cm}2;$?
②當(dāng)?$3<t≤6$?時(shí),如圖②,
由題意得?$AP= 2t\ \mathrm {cm},$??$AQ= (2t-6)\ \mathrm {cm},$?
∴?$PQ=AP-AQ=6\ \mathrm {cm},$?
∴?$S_{△CPQ}=\frac 12PQ×BC=\frac 12×6×6=18(\ \mathrm {cm}2);$?
③當(dāng)?$6<t≤9$?時(shí),如圖③,
由題意得?$BP= (2t- 12)\ \mathrm {cm},$??$AQ=(2t- 6)\ \mathrm {cm},$?
∴?$CP=6-BP=(18- 2t)\ \mathrm {cm},$??$BQ=12-AQ=(18- 2t)\ \mathrm {cm}.$?
∴?$S_{△CPQ}=\frac 12×CP×BQ=\frac 12×(18-2t)2=(2t2-36t+162)\ \mathrm {cm}2$?