證明:如圖,連接?$BG、$??$DH. $?
∵ 四邊形?$ABCD$?為平行四邊形,
∴?$ AB=CD,$??$AD=BC,$??$\frac {AB}{CD}.$?
∴?$ ∠ABE=∠CDF. $?
∵?$ AE⊥BD,$??$CF⊥BD,$?
∴?$ ∠AEB=∠CFD=90°.$?
在?$△ABE$?和?$△CDF $?中,
?$\begin{cases}{∠AEB=∠CFD,}\\{∠ABE=∠CDF,}\\{AB=CD,}\end{cases}$?
∴?$ △ABE≌△CDF(\mathrm {AAS}). $?
∴?$ BE=DF. $?
∵?$ G、$??$H$?分別為?$AD、$??$BC$?的中點(diǎn),
∴?$ BH=\frac 12\ \mathrm {BC},$??$GD=\frac 12\ \mathrm {AD}.$?
∴?$ BH=GD.$?
又 ∵?$ BH//GD,$?
∴ 四邊形?$BHDG$?是平行四邊形.
∴?$ OB=OD,$??$OG=OH. $?
∴?$ OB-BE=OD-DF,$?即?$OE=OF. $?
∴?$EF$?與?$GH$?互相平分.