解:在?$Rt△ABD$?中,∵?$∠BAD=30°$?
∴?$BD=AB · tan 30°=6× \frac {\sqrt{3}}{3}=2 \sqrt{3}$?
∵?$∠BAC=60°,$??$∠ABC=30°$?
∴?$∠ACB=90°$?
∴?$BC=AB · cos 30°=6× \frac {\sqrt{3}}{2}=3 \sqrt{3}$?
過點?$C$?作?$CE⊥BD,$?垂足為?$E$?
則?$∠CBE=60°,$??$CE=BC · s in 60°=\frac {9}{2}$?
∴?$BE=BC · cos 60°=\frac {3\sqrt{3}}{2},$??$DE=BD-BE=2 \sqrt{3} - \frac {3\sqrt{3}}{2}=\frac {\sqrt{3}}{2}$?
∴在?$Rt△CDE$?中,?$CD=\sqrt{CE^2+DE^2}=\sqrt{(\frac {9}{2})^2+(\frac {\sqrt{3}}{2})^2}=\sqrt{21}$?
∴兩山頭之間的距離為?$ \sqrt{21}\ \mathrm {km}$?