?$(1)$?證明:∵?$AB=AC$?
∴?$∠B=∠C$?
∵?$△ABC≌△DEF$?
∴?$∠AEF=∠B$?
∵?$∠AEF+∠CEM=∠AEC=∠B+∠BAE$?
∴?$∠CEM=∠BAE$?
∴?$△ABE∽△ECM$?
?$ (2) ①$?當(dāng)?$DE⊥BC$?時(shí),∵?$AB=AC$?
∴?$∠BAE=∠EAM$?
∵?$△ABC≌△DEF$?
∴?$∠B=∠DEF$?
∴?$△ABE∽△AEM$?
∴?$\frac {AB}{AE}=\frac {AE}{AM},$??$∠AME=∠AEB=90°$?
∵?$AB=AC=5,$??$DE⊥BC,$??$BC=6$?
∴?$BE=EC= \frac 12BC=3$?
在?$Rt△ABE$?中,?$AE=\sqrt{AB^2-BE^2}=\sqrt{5^2-3^2}=4$?
∴?$\frac {5}{4}=\frac {4}{AM}$?
∴?$AM=\frac {16}{5}$?
∴?$CM=AC-AM=5- \frac {16}{5}=\frac {9}{5} $?
②在?$Rt△AEM$?中,?$EM=\sqrt{AE^2-AM^2}=\sqrt{4^2-(\frac {16}{5})}=\frac {12}{5}$?
∴?$S_{△AEM}= \frac 12AM·EM= \frac {1}{2}× \frac {16}{5}× \frac {12}{5}= \frac {96}{25}$?
∴疊部分的面積為?$ \frac {96}{25} $?
?$(3)$?∵?$∠AEF=∠B=∠C,$?且?$∠AME> ∠C$?
∴?$∠AME> ∠AEF$?
∴?$AE≠AM$?
當(dāng)?$AE=EM$?時(shí),?$△ABE≌△ECM$?
∴?$CE=AB=5$?
∴?$BE=BC-EC=6-5=1$?
當(dāng)?$AM=EM$?時(shí),?$∠MAE=∠MEA$?
∴?$∠MAE+∠BAE=∠MEA+∠CEM,$?即?$∠CAB=∠CEA$?
又∵?$∠C=∠C$?
∴?$△CAE∽△CBA$?
∴?$\frac {CE}{CA}=\frac {CA}{CB}$?
∴?$CE=\frac {CA^2}{CB}=\frac {25}{6}$?
∴?$BE=6- \frac {25}{6}=\frac {11}{6}$?
∴?$BE=1$?或?$BE=\frac {11}{6}$?