解:由設(shè)?$Rt△ABC$?三邊?$BC,$??$CA,$??$AB$?的長分別為?$a,$??$b,$??$c,$?則?$c^2=a^2+b^2$?
?$(1)S_1=S_2+S_3$?
?$(2)S_1=S_2+S_3,$?證明如下:
顯然?$S_1=\frac {\sqrt {3}}4c^2,$??$S_2=\frac {\sqrt {3}}4a^2,$??$S_3=\frac {\sqrt {3}}4b^2$?
∴?$S_2+S_3=\frac {\sqrt {3}}4(a^2+b^2)=\frac {\sqrt {3}}4c^2=S_1$?
?$(3)$?當(dāng)所作的三個(gè)三角形相似時(shí),?$S_1=S_2+S_3$?
∵所作三個(gè)三角形相似
∴?$\frac {S_2}{S_1}=\frac {a^2}{c^2},$??$\frac {S_3}{S_1}=\frac {b^2}{c^2}$?
∴?$\frac {S_2+S_3}{S_1}=\frac {a^2+b^2}{c^2}=1$?
∴?$S_1=S_2+S_3$?
?$(4)$?分別以?$Rt△ABC$?的三邊?$AB、$??$BC、$??$AC$?為一邊向外作相似圖形,
其面積分別用?$S_1、$??$S_2、$??$S_3$?表示,則?$S_1=S_2+S_3$?