解:?$(1)$?∵?$\angle DFO=\angle DCO=\angle COF=90°,$??$OC//DF$?
∵?$CD//OA$?
∴四邊形?$COFD$?是矩形
∵根據(jù)?$\triangle COD$?沿?$OD$?翻折,得到?$\triangle FOD$?
∴?$OC=OF=6$?
∴四邊形?$COFD$?是正方形
同理四邊形?$BDGE$?是正方形
∴?$CD=OF=DF=6,$??$OA=10,$??$AE=6-4=2$?
∴?$D(6,$??$6),$??$E(10,$??$2)$?
設(shè)直線?$DE$?的解析式是?$y=kx+b$?
代入得:?$\begin{cases}{2=10k+b}\\{6=6k+b}\end{cases},$?解得?$\begin{cases}{k=-1}\\{b=12}\end{cases}$?
∴直線?$DE$?的函數(shù)關(guān)系式是?$y=-x+12$?
?$(2)$?依題意有:?$CD=a,$??$BD=10-a,$??$BE=6-b$?
∵?$\angle ODE=90°,$??$\angle OCD=90°$?
∴?$\angle CDO+\angle COD=\angle CDO+\angle BDE=90°$?
∴?$\angle COD=\angle BDE$?
∵?$\angle OCD=\angle B=90°$?
∴?$\triangle OCD∽\triangle DBE$?
∴?$\frac {BD}{OC}=\frac {BE}{CD},$?即?$\frac {10-a}{6}=\frac {6-b}{a}$?
∴?$b=\frac {1}{6}a^2-\frac {5}{3}a+6=\frac {1}{6}(a-5)^2+\frac {11}{6}$?
當(dāng)?$a=5$?時(shí),?$b_{最小值}=\frac {11}{6}$?
?$(3)$?猜想:直線?$DE$?與拋物線?$y=-\frac {1}{24}x^2+6$?只有一個(gè)公共點(diǎn)
證明:由?$(1)$?可知,?$DE$?所在直線為?$y=-x+12$?
代入拋物線,得?$-\frac {1}{24}x^2+6=-x+12$?
化簡(jiǎn)得?$x^2-24x+144=0$?
∵根的判別式?$(-24)^2-4×1×144=0$?
∴直線?$DE$?與拋物線?$y=-\frac {1}{24}x^2+6$?只有一個(gè)公共點(diǎn)
解得?$x=12$?
∴?$y=0$?
公共點(diǎn)為:?$(12,$??$0)$?
∴延長(zhǎng)?$OF $?交?$DE$?于點(diǎn)?$H,$?點(diǎn)?$H$?即為公共點(diǎn)