解:?$(1)$?設(shè)水平移動了?$x\ \mathrm {m}$?
∵?$i=1:$??$3$?
∴?$\frac {0.5}{x}=\frac {1}{3}$?
解得:?$x=1.5$?
∴貨物從如圖所示的位置升高?$0.5m,$?水平移動了?$1.5m$?
?$(2)$?能達(dá)到目的,理由如下:
當(dāng)重心?$G$?落在直線?$CD$?上時,過點?$E$?作貨廂底部的垂線于?$H,$?交?$BF$?于?$I,$?
過點?$G{作}GT⊥BF{于}T$?
此時點?$E$?到貨廂底部的垂線最長,?$GT=FT=\frac {1}{2}EF=1(\mathrm {m})$?
∵貨廂底部與地面平行
∴?$EH//CD$?
∴?$∠HIT=∠ABD$?
∵?$∠BDA=∠IHB=90°$?
∴?$∠IBH=∠BAD$?
∵?$∠BIH=∠EIF,$??$∠IHB=∠EFI=90°$?
∴?$∠FEI=∠IBH=∠BAD$?
∵?$tan∠BAD=\frac {1}{3}$?
∴?$\frac {FI}{EF}=\frac {1}{3}$?
∴?$FI=\frac {1}{3}EF=\frac {2}{3}(\mathrm {m})$?
∴?$EI=\sqrt {EF^2+FI^2}=\sqrt {2^2+(\frac {2}{3})^2}=\frac {2\sqrt {10}}3(\mathrm {m})$?
∵?$∠ABD=∠GBT,$??$∠BDA=∠GTB=90°$?
∴?$∠BGT=∠BAD$?
∴?$\frac {BT}{GT}=\frac {1}{3}$?
∴?$BT=\frac {1}{3}GT=\frac {1}{3}(\mathrm {m})$?
∴?$BF=FT+BT=1+\frac {1}{3}=\frac {4}{3}(\mathrm {m})$?
∴?$BI=BF-FI=\frac {4}{3}-\frac {2}{3}=\frac {2}{3}(\mathrm {m})$?
∵?$\frac {IH}{BH}=\frac {1}{3}$?
∴?$IH^2+(3IH)^2=BI^2$?
∴?$10IH^2=(\frac {2}{3})^2$?
∴?$IH=\frac {\sqrt {10}}{15} (\mathrm {m})$?
∴?$EH=EI+IH=\frac {2\sqrt {10}}3+\frac {\sqrt {10}}{15}=\frac {11\sqrt {10}}{15}(\mathrm {m})$?
∵?$\frac {11}{15}\sqrt {10}<2.5$?
∴貨物的?$E$?點碰不到貨廂頂部
∴工人師傅能達(dá)到目的