解:∵?$H$?為?$AD$?的中點(diǎn)
∴?$AH=HD$?
∵?$E、$??$G $?分別為?$AB、$??$CD$?的中點(diǎn)
∴?$AE=\frac {1}{2}\ \mathrm {AB},$??$DG=\frac {1}{2}\ \mathrm {CD}$?
∵四邊形?$ABCD$?是矩形
∴?$∠A=∠D=90°,$??$AB=CD$?
∴?$AE=DG$?
在?$△AEH$?和?$△DGH$?中
?$AE=DG$?
?$∠A=∠D=90°$?
?$AH=DH$?
∴?$△AEH≌DGH(\mathrm {SAS})$?
∴?$EH=GH$?
同理可得?$EH=GH=FG=EF$?
∵四邊形?$EFGH$?的周長(zhǎng)為?$40\ \mathrm {cm}$?
∴?$EH=10\ \mathrm {cm}$?
在?$Rt △A EH $?中,?$s in ∠A EH =\frac {AH}{EH}=\frac {4}{5}$?
∴?$AH=8\ \mathrm {cm},$??$AE=\sqrt{EH^2-AH^2}=6\ \mathrm {cm}$?
∴?$AD=2\ \mathrm {AH}=16\ \mathrm {cm},$??$AB=2\ \mathrm {AE}=12\ \mathrm {cm}$?
∴?$S _{矩形ABCD}=AB · AD=12×16=192(\ \mathrm {cm^2}) $?