亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第59頁

第59頁

信息發(fā)布者:
?$\frac {\sqrt{5}-1}{2}$?
解:如圖,設(shè)?$∠A=α,$??$BC=1$?
∵?$sin α=\frac 13,$?即?$\frac {BC}{AB}=\frac 13$?
∴?$AB=3$?
∴?$AC=\sqrt {AB^2-BC^2}=2\sqrt 2$?
∴?$cos α=\frac {AC}{AB}=\frac {2\sqrt 2}3,$??$tan α=\frac {BC}{AC}=\frac 1{2\sqrt 2}=\frac {\sqrt 2}4$?

解:如圖,等腰三角形?$ABC,$?過點(diǎn)?$A$?作?$AD⊥BC,$?垂足為點(diǎn)?$D$?

則?$BD=DC=\frac 12BC$?
①當(dāng)?shù)走呴L(zhǎng)為?$6$?時(shí),腰長(zhǎng)為?$(16-6)÷2=5$?
?$ AB=5,$??$BD=\frac 12BC=3$?
∴?$AD=\sqrt{AB^2-BD^2}=4$?
?$ sin B=\frac {AD}{AB}=\frac 45$?
②當(dāng)腰長(zhǎng)為?$6$?時(shí),底邊長(zhǎng)為?$16-6×2=4$?
∴?$AB=6,$??$BD=\frac 12BC=2$?
?$ AD=\sqrt{AB^2-BD^2}=4\sqrt 2$?
?$ sin B=\frac {AD}{AB}=\frac {4\sqrt 2}{6}=\frac {2\sqrt 2}3$?
綜上,底角的正弦值為?$\frac 45$?或?$\frac {2\sqrt 2}3$?
解:?$(1)$?在?$Rt△CDE$?中,∵?$∠CDE=90°,$??$tan ∠DCE=\frac {2}{3} $?
∴?$\frac {DE}{CD} =\frac {2}{3}$?
∵?$CD=6$?
∴?$DE=4$?
∴?$CE=\sqrt{CD^2+DE^2}=\sqrt{6^2+4^2}=2 \sqrt{13}$?
?$ (2) $?如圖,取?$CD$?的中點(diǎn)?$F,$?連接?$EF$?
∵?$E$?是?$AB$?的中點(diǎn)
∴?$EF//AD$?
∴?$∠ADE=∠DEF$?
∵?$CD=6,$??$F $?是?$CD$?的中點(diǎn)
∴?$DF=3$?
由勾股定理,得?$EF=\sqrt{DF^2+DE^2}=\sqrt{3^2+4^2}=5$?
在?$Rt△DEF $?中,∵?$∠EDF=90°,$??$DE=4,$??$EF=5$?
∴?$cos ∠DEF =\frac {DE}{EF}=\frac {4}{5}$?
∴?$cos ∠ADE=\frac {4}{5},$?即?$∠ADE$?的余弦值為?$ \frac {4}{5}$?

?$(1)$?證明:如圖,連接?$OE$?
∵?$OA=OE$?
∴?$∠OAE=∠OEA$?
∴?$∠FOE=∠OAE+∠OEA=2∠OAE$?
∵?$∠CAB=2∠EAB$?
∴?$∠CAB=∠FOE$?
又∵?$∠AFE=∠ABC$?
∴?$∠CAB+∠ABC=∠FOE+∠AFE$?
∵?$AB$?是?$⊙O$?的直徑
∴?$∠ACB=90°$?
∴?$∠CAB+∠ABC=90°=∠FOE+∠AFE$?
∴?$∠OEF=90°,$?即?$OE⊥EF$?
∵?$OE$?是半徑
∴?$EF $?是?$⊙O$?的切線
?$(2)$?解:在?$Rt△EOF$?中,設(shè)半徑為?$r,$?即?$OE=OB=r,$?則?$OF=r+1$?
∵?$sin∠AFE=\frac {4}{5}=\frac {OE}{OF}=\frac {r}{r+1}$?
∴?$r=4$?
∴?$AB=2r=8$?
在?$Rt△ABC$?中,?$sin∠ABC=\frac {AC}{AB}=sin∠AFE=\frac {4}{5},$??$AB=8$?
∴?$AC=\frac {4}{5}×8=\frac {32}{5}$?
∴?$BC=\sqrt {AB^2-AC^2}=\frac {24}{5}$?