解:?$(1)$?∵拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為?$y=2(x-1)^2$?
∴頂點(diǎn)坐標(biāo)為?$A(1,$??$0)$?
在函數(shù)?$y=2(x-1)^2 $?中,∵當(dāng)?$x=0$?時(shí),?$y=2$?
∴?$B(0,$??$2) $?
?$(2)$?根據(jù)題意,得?$A(1,$??$0),$??$B(0,$??$2)$?
∴?$OA=1,$??$OB=2$?
設(shè)?$P(t,$??$2t^2-4t+2)(t> 0)$?
如圖,過(guò)點(diǎn)?$P $?作?$PC⊥x$?軸于點(diǎn)?$C$?
∴?$PC=2t^2-4t+2,$??$OC=t$?
∴?$AC=t-1$?
∵?$S_{△PAB}=S _{梯形PBOC}-S_{△ABO}-S_{△PAC}=2$?
∴?$\frac {t}{2} ×(2+2t^2-4t+2)- \frac {1}{2} ×1×2- \frac {1}{2} ×(2t^2-4t+2) · (t-1)= 2$?
整理,得?$t^2-t=2$?
解得?$t_{1}=-1($?舍去),?$t_{2}=2$?
∴點(diǎn)?$P $?的坐標(biāo)為?$(2,$??$2)$?