解:?$(1)$?由表格可知,將點(diǎn)?$(1,$??$2)$?和點(diǎn)?$(2,$??$1)$?代入函數(shù)解析式
得?$\begin{cases}{a(1-2)^2+k=2}\\{a(2-2)^2+k=1}\end{cases},$?解得?$\begin{cases}{a=1}\\{k=1}\end{cases}$?
∴?$y_{1}=(x-2)^2+1$?
?$(2) $?由題意,得?$y_{2}=(x-2+2)^2+1=x^2+1$?
把點(diǎn)?$A(m,$??$n_{1})、$??$B(m+1,$??$n_{2})$?分別代入?$y_{1}、$??$y_{2}$?的表達(dá)式中,
?$n_{1}=(m-2)^2+1=\ \mathrm {m^2}-4m+5,$??$n_{2}=(m+1)^2+1=\ \mathrm {m^2}+2\ \mathrm {m}+2$?
∴?$n_{1}-n_{2}=(\ \mathrm {m^2}-4m+5)-(\ \mathrm {m^2}+2m+2)=-6m+3$?
當(dāng)?$-6m+3> 0$?時(shí),?$m< \frac {1}{2};$?當(dāng)?$-6m+3=0$?時(shí),?$m=\frac {1}{2};$?當(dāng)?$-6m+3< 0$?時(shí),?$m> \frac {1}{2}$?
∴當(dāng)?$m< \frac {1}{2} $?時(shí),?$n_{1}-n_{2}> 0,$?即?$n_{1}> n_{2};$?
當(dāng)?$m=\frac {1}{2} $?時(shí),?$n_{1}-n_{2}=0,$?即?$n_{1}=n_{2};$?
當(dāng)?$m>\frac {1}{2} $?時(shí),?$n_{1}-n_{2}< 0,$?即?$n_{1}< n_{2}$?