亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第11頁(yè)

第11頁(yè)

信息發(fā)布者:
解:?$(1)$?∵?$a=-1< 0$?
∴圖像開(kāi)口向下
∵?$y=-(x-2)^2+3$?
∴頂點(diǎn)坐標(biāo)是?$(2,$??$3)$?
?$(2)$?∵對(duì)稱軸為直線?$x=2,$?圖像開(kāi)口向下,?$y$?隨?$x$?增大而減小
∴?$x$?的取值范圍為?$x> 2 $?
?$(3)$?∵拋物線的對(duì)稱軸為直線?$x=2,$?滿足?$1< x< 4$?
∴此時(shí)?$y$?的最大值為?$3$?
∵當(dāng)?$x=1$?時(shí),?$y=2;$?當(dāng)?$x=4$?時(shí),?$y=-1$?
∴當(dāng)?$1< x< 4$?時(shí),?$y$?的取值范圍是?$-1< y≤3$?
解:?$(1)$?∵拋物線?$y=a(x-3)^2+2$?經(jīng)過(guò)點(diǎn)?$(1,$??$-2)$?
∴?$-2=a(1-3)^2+2$?
∴?$a=-1 $?
?$(2)$?∵?$y=-(x-3)^2+2$?
∴此函數(shù)的圖像開(kāi)口向下
當(dāng)?$x< 3$?時(shí),?$y$?隨?$x$?增大而增大,當(dāng)?$x> 3$?時(shí),?$y$?隨?$x$?增大而減小
∵點(diǎn)?$A(m,$??$y_{1})、$??$B(n,$??$y_{2})(m< n< 3)$?都在該拋物線上
∴?$y_{1}< y_{2}$?
解:?$(1)$?當(dāng)?$m=2$?時(shí),?$y=- \frac {1}{2} (x-4)^2-1$?
∵點(diǎn)?$A(6,$??$n)$?在該函數(shù)的圖像上
∴?$n=- \frac {1}{2} (6-4)^2-1=-3 $?
?$(2)$?若頂點(diǎn)是?$(2,$??$-1),$?則?$2m=2①,$??$1-m=-1②$?
由①得?$m=1,$?由②得?$m=2$?
故小明的說(shuō)法錯(cuò)誤 
?$(3)$?∵?$P、$??$Q $?兩點(diǎn)的縱坐標(biāo)相等
∴對(duì)稱軸為直線?$x=\frac {a+1+4\ \mathrm {m}-7+a}{2}=a+2m-3$?
∴?$a+2m-3=2m$?
∴?$a=3$?
∴?$P(4,$??$c)$?
∴?$c=- \frac {1}{2} (4-2m) ^2+1-m=-2(m-\frac {7}{4} ) ^2-\frac {7}{8}$?
∵?$-2(m-\frac {7}{4})^2 ≤0$?
∴?$c≤-\frac {7}{8}$?
解:?$(1)$?由表格可知,將點(diǎn)?$(1,$??$2)$?和點(diǎn)?$(2,$??$1)$?代入函數(shù)解析式
得?$\begin{cases}{a(1-2)^2+k=2}\\{a(2-2)^2+k=1}\end{cases},$?解得?$\begin{cases}{a=1}\\{k=1}\end{cases}$?
∴?$y_{1}=(x-2)^2+1$?
?$(2) $?由題意,得?$y_{2}=(x-2+2)^2+1=x^2+1$?
把點(diǎn)?$A(m,$??$n_{1})、$??$B(m+1,$??$n_{2})$?分別代入?$y_{1}、$??$y_{2}$?的表達(dá)式中,
?$n_{1}=(m-2)^2+1=\ \mathrm {m^2}-4m+5,$??$n_{2}=(m+1)^2+1=\ \mathrm {m^2}+2\ \mathrm {m}+2$?
∴?$n_{1}-n_{2}=(\ \mathrm {m^2}-4m+5)-(\ \mathrm {m^2}+2m+2)=-6m+3$?
當(dāng)?$-6m+3> 0$?時(shí),?$m< \frac {1}{2};$?當(dāng)?$-6m+3=0$?時(shí),?$m=\frac {1}{2};$?當(dāng)?$-6m+3< 0$?時(shí),?$m> \frac {1}{2}$?
∴當(dāng)?$m< \frac {1}{2} $?時(shí),?$n_{1}-n_{2}> 0,$?即?$n_{1}> n_{2};$?
當(dāng)?$m=\frac {1}{2} $?時(shí),?$n_{1}-n_{2}=0,$?即?$n_{1}=n_{2};$?
當(dāng)?$m>\frac {1}{2} $?時(shí),?$n_{1}-n_{2}< 0,$?即?$n_{1}< n_{2}$?