解:?$(1)$?∵?$CD$?是?$Rt△ABC$?的斜邊中線
∴?$CD= BD$?
∴?$∠DCB=∠B$?
∵?$∠HAC+∠ACH=90°,$??$∠ACH+∠DCB=90°$?
∴?$∠HAC=∠DCB=∠B$?
∵?$AH= 2CH$?
∴?$AC=\sqrt{AH2+ HC2}=\sqrt{5}CH$?
∴?$sin B= sin∠HAC =\frac {HC}{AC}=\frac {\sqrt{5}}{5}$?
?$(2)$?∵?$CD=\sqrt{5}$?
∴?$AB= 2CD= 2\sqrt{5}.$?
∵?$sin B =\frac {\sqrt{5}}{5}$?
∴?$AC=2$?
∴?$BC=2AC=4$?
∵?$∠HAC=∠B,$??$∠AHC=∠ACB$?
∴?$△ACE∽△BCA$?
?$\frac {CE}{AC}=\frac {AC}{BC}$?
∴?$CE=1$?
∴?$BE=BC-CE=3$?