解:?$(1)$?把?$x=0,$??$y= 2$?及?$h= 2.6$?代入?$y= a(x-6)2+h$?
即?$2=a(0-6)2+2.6$?
∴?$a=-\frac {1}{60}$?
當(dāng)?$h= 2.6$?時(shí),?$y$?與?$x$?的函數(shù)表達(dá)式為?$y=-\frac {1}{60}(x-6)2+ 2.6 $?
?$(2)$?當(dāng)?$h= 2.6$?時(shí),?$y=-\frac {1}{60}(x- 6)2+2.6$?
∴當(dāng)?$x=9$?時(shí);
?$y=-\frac {1}{60}(9- 6)2+ 2.6= 2.45> 2.43$?
∴球能越過網(wǎng)
∵當(dāng)?$y= 0$?時(shí),即?$-\frac {1}{60}(x-6)2+2.6= 0$?
解得?${x}_1=6+\sqrt{156}> 18,$??${x}_2= 6-\sqrt{156}($?不合題意,舍去)
或當(dāng)?$x = 18$?時(shí),?$y=-\frac {1}{60}(18- 6)2+ 2.6= 0.2>0$?
∴球會(huì)出界
?$(3)$?把?$x=0,$??$y= 2,$?代入?$y=a(x-6)2+h $?得?$a=\frac {2-h}{36}$?
當(dāng)?$x=9$?時(shí),?$y=\frac {2-h}{36}×(9-6)2+h=\frac {2+3h}{4}>2.43①$?
當(dāng)?$x=18$?時(shí),?$y=\frac {2-h}{36}×(18-6)2+h=8-3h≤0 ②$?
由①②解得?$h≥\frac {8}{3}。$?
∴若球一 定能越過球網(wǎng),又不出邊界,?$h $?的取值范圍為?$h≥\frac {8}{3}$?