解:?$(1)$?由二次函數(shù)?$y=-x2+bx+c $?的圖像經(jīng)過點?$A(-1,$??$0),$??$C(2,$??$3)$?
?$\begin{cases}{-1-b+c=0 } \\{-4+2b+c=3} \end{cases}$? 解得?$\begin{cases}{b=2}\\{c=3}\end{cases}$?
∴函數(shù)表達式為?$y= -x2+ 2x +3$?
由直線?$AC$?經(jīng)過點?$A(-1,$??$0),$??$C(2,$??$3)$?
可得函數(shù)表達式為?$y=x+ 1$?
?$(2)$?由?$y= -x2+2x+ 3,$?得?$N(0,$??$3),$??$D(1,$??$4)$?
點?$D$?關(guān)于過點?$(3,$??$0)$?且與?$y$?軸平行的直線的對稱點?$D'$?的坐標(biāo)為?$(5,$??$4)$?
連接?$ND',$?則?$ND'$?的函數(shù)表達式為?$y=\frac {1}{5}x+ 3$?
?$ND'$?交一次函數(shù)?$x = 3$?的圖像于點?$M(3,$??$\frac {18}{5})$?
即?$m=\frac {18}{5},$?此時?$MN+MD$?的值最小
?$(3)$?二次函數(shù)?$y= -x2+2x+3$?的圖像的對稱軸為過點?$(1,$??$0)$?且與?$y$?軸平行的直線
因此?$B(1,$??$2),$??$D(1,$??$4),$??$BD= 2$?
若以?$B、$??$D、$??$E、$??$F $?為頂點的四邊形是平行四邊形,且?$EF//BD$?
則?$EF= BD$?
設(shè)點?$E、$??$F $?的坐標(biāo)分別為?$(t,$??$t+1)、$??$(t,$??$-t2+2t+3)$?
則?$|(-t2+2t+3)-(t+1)|=2$?
解得?${t}_1= 0,$??${t}_2= 1($?舍去),?${t}_3=\frac {1+\sqrt{17}}{2},$??${t}_4=\frac {1-\sqrt{17}}{2} $?
∴?${E}_1(0,$??$1),$??${E}_2(\frac {1+\sqrt{17}}{2},$??$\frac {3+\sqrt{17}}{2}),$??${E}_3(\frac {1-\sqrt{17}}{2},$??$\frac {3-\sqrt{17}}{2})$?
?$(4)$?過點?$P $?作?$PQ//y$?軸,交?$AC$?于點?$Q$?
設(shè)點?$P $?的坐標(biāo)為?$(a,$??$-a2+ 2a+ 3),$?則點?$Q $?的坐標(biāo)為?$(a,$??$a + 1)$?
∵點?$P $?在?$AC$?上方
∴?$PQ=(-a2+2a+3)- (a+1)= -a2+a+2$?
∴?$S_{△APC}= S_{△APQ}+ S_{△CPQ}$?
?$=\frac {1}{2}(-a2+a+2) · [2-(-1)]$?
?$=-\frac {3}{2}(a-\frac {1}{2})2+\frac {27}{8}$?
∴當(dāng)?$a=\frac {1}{2}$?時,?$S_{△APC}$?的最大值為?$\frac {27}{8}$?