解:?$(1)$?如答圖?$1,$?過(guò)點(diǎn)?$C$?作?$OB$?的垂線,
分別交仰角、俯角線于點(diǎn)?$E,$??$D,$?交水平線于點(diǎn)?$F.$?
在?$Rt△AEF $?中,?$tan∠EAF=\frac {EF}{AF}$?
所以?$EF=AF×tan 15°≈130×0.27= 35.1(\ \mathrm {cm}). $?
因?yàn)?$AF=AF,$??$∠EAF=∠DAF,$??$∠AFE=∠AFD= 90°,$?
所以?$△ADF≌△AEF(\mathrm {ASA}),$?
所以?$EF= DF=35.1\ \mathrm {cm},$?
所以?$CE=160+35.1=195.1(\ \mathrm {cm}),$?
?$ED=35.1×2=70.2(\ \mathrm {cm})> 26\ \mathrm {cm},$?
所以小杜下蹲的最小距離為?$208-195. 1=12. 9(\ \mathrm {cm}).$?
?$(2)$?如答圖?$2,$?過(guò)點(diǎn)?$B$?作?$OB$?的垂線分別交仰角、俯角線于點(diǎn)?$M,$??$N.$?
交水平線于點(diǎn)?$P.$?
在?$Rt△APM$?中,?$tan∠MAP =\frac {MP}{AP}$?
所以?$MP=AP×tan 20°≈150×0.36= 54. 0(\ \mathrm {cm}).$?
因?yàn)?$AP= AP,$??$∠MAP=∠NAP,$??$∠APM=∠APN=90°,$?
所以?$△AMP≌△ANP(\mathrm {ASA}),$?
所以?$PN= MP= 54.0\ \mathrm {cm},$?
所以?$BN= 160- 54.0= 106.0(\ \mathrm {cm}).$?
小若墊起腳尖后頭頂?shù)母叨葹?$120+3= 123(\ \mathrm {cm}),$?
所以小若頭頂超出點(diǎn)?$N$?的高度?$= 123- 106. 0= 17.0(\ \mathrm {cm})>15(\ \mathrm {cm}),$?
所以小若墊起腳尖后能被識(shí)別.