亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第25頁

第25頁

信息發(fā)布者:
???$ 解:設(shè)一條直角邊為x ,三角形面積為y$???
???$ y=\frac {1}{2}x(8-x)=-\frac {1}{2}x2+4x=-\frac {1}{2}(x-4)2+8$???
???$ 當(dāng)x=4時(shí), y取最大值8 ,另一邊8-x=4$???
???$ 所以當(dāng)兩條直角邊都是4時(shí),三角形面積最大,最大值是8$???
解:????$ (1)$????由題意得,
????$ S=x(24- 4x)= -4x2+ 24x$????
因?yàn)????$AB、$????????$CD$????的長度大于????$0$????
所以????$\begin{cases}{x>0 }\\{24-4x>0} \end{cases}$????
解得????$0<x<6.$????
所以????$S$????與????$x$????之間的函數(shù)表達(dá)式為????$S=-4x2+ 24x$????
自變量????$x$????的取值范圍為????$0<x<6$????
????$ (2)$????由題意得,????$4≤24- 4x≤8$????
解得,????$4≤ x≤5。$????
因?yàn)????$S= -4x2+24x= -4(x-3)2+36 $????
所以二次函數(shù)的對(duì)稱軸為直線????$x = 3$????
因?yàn)楫?dāng)????$4≤x≤5$????時(shí),????$ S$????隨????$x$????的增大而減小
所以當(dāng)????$x = 4$????時(shí),????$S$????取最大值,
最大值為????$-4×(4-3)2+36=32;$????
當(dāng)????$x = 5$????時(shí),????$ S$????取最小值,
最小值為????$-4×(5- 3)2+36= 20$????
所以最大面積為????$32m2 ,$????最小面積為????$20m2$????
解:????$ (1)$????由題意得,
????$ \begin{cases}{-\dfrac {-2}{2a}=1 }\\{a-2+c=-4} \end{cases}$????
解得????$a=1,$????????c$=-3$????
所以二次函數(shù)的表達(dá)式為????$y=x2- 2x- 3 $????
????$ (2)$????因?yàn)槎魏瘮?shù)????$y=x2-2x-3$????的圖像與????$y$????軸交于點(diǎn)????$C ,$????
與????$x$????軸正半軸交于點(diǎn)????$B$????
所以????$C(0,$????????$-3),$????????$B(3,$????????$0)$????
設(shè)直線????$AC$????的解析式為????$y= kx+b$????
將????$A(1,$????????$ -4),$????????$ C(0,$????????$ -3)$????代入,
得????$\begin{cases}{-4=k+b }\\{-3=b} \end{cases}$????
解得????$k=-1,$????????$b=-3$????
所以直線????$AC$????的解析式為????$y= -x- 3$????
同理可得,直線????$AB$????的解析式為????$y= 2x- 6$????
設(shè)點(diǎn)????$P$????坐標(biāo)為????$(t ,$????????$ -t-3) ,$????此時(shí)四邊形????$OPEF$????的面積為????$S$????
因?yàn)????$P(t,$????????$ -t-3) ,$????????$ PE//x$????軸
所以點(diǎn)????$E$????的縱坐標(biāo)為????$-t-3$????
因?yàn)辄c(diǎn)????$E$????在直線????$AB$????上
所以????$-t-3= 2x-6$????
解得,????$ x=\frac {-t+6}{2}$????
所以????$E(\frac {-t+3}{2},$????????$-t-3)$????
所以????$S=\frac {1}{2}×(t+3)×(\frac {-t+3}{2}+\frac {-t+3}{2}-t)$????
????$ = -t2-\frac {3}{2}t+\frac {9}{2}$????
????$ =-(t+\frac {3}{4})2+\frac {81}{16}$????
所以當(dāng)????$t= -\frac {3}{4}$????時(shí),四邊形????$OPEF$????的面積取最大值,
最大值為????$\frac {81}{16}.$????此時(shí)點(diǎn)????$P$????的坐標(biāo)為????$(-\frac {3}{4} ,$????????$-\frac {9}{4})$????