亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第72頁

第72頁

信息發(fā)布者:
14
A
A
2
$ (4,6)或(-4,-6)$
$5+2\sqrt{7}或10+\sqrt{7}$
②③④
$解:過點(diǎn)C作CE⊥AD于點(diǎn)E,如圖所示$

$由題意可知,\frac {DE}{CE}=\frac {1.2}{1.8}=\frac 2 3$
$∵CE=AB=12m$
$∴DE=8m$
$∵AE=BC=6m$
$∴AD=AE+DE=6+8=14m$
$故答案為:14$
$解:如圖,作BF\bot l_3,AE\bot l_3$
$\because \angle A C B=90^{\circ}$
$\therefore \angle B C F+\angle A C E=90^{\circ}$
$\because \angle B C F+\angle CB F=90^{\circ}$
$\therefore \angle A C E=\angle C B F$
$在\triangle A C E和\triangle C B F中$
$\left\{\begin{array}{}{\angle B F C=\angle C E A} \\ {\angle C B F=\angle A C E} \\ {B C=A C}\end{array}\right.$
$\therefore \triangle A C E ≌ \triangle C B F$
$\therefore C E=B F=3,C F=A E=4$
$\because l_{1}與l_{2}的距離為1,l_2與l_3的距離為3$
$\therefore A G=1,B G=E F=C F+C E=7$
$\therefore A B=\sqrt{B G^{2}+A G^{2}}=5 \sqrt{2}$
$\because l_2// l_3$
$\therefore \frac{D G}{C E}=\frac{A G}{A E}=\frac{1}{4}$
$\therefore D G=\frac{1}{4} C E=\frac{3}{4}$
$\therefore B D=B G-D G=7-\frac{3}{4}=\frac{25}{4}$
$\therefore \frac{A B}{B D}=\frac{5 \sqrt{2}}{\frac{25}{4}}=\frac{4 \sqrt{2}}{5}$
$故選\mathrm{A}$
$解:如圖,作BF\bot l_3,AE\bot l_3$
$\because \angle A C B=90^{\circ}$
$\therefore \angle B C F+\angle A C E=90^{\circ}$
$\because \angle B C F+\angle CB F=90^{\circ}$
$\therefore \angle A C E=\angle C B F$
$在\triangle A C E和\triangle C B F中$
$\left\{\begin{array}{}{\angle B F C=\angle C E A} \\ {\angle C B F=\angle A C E} \\ {B C=A C}\end{array}\right.$
$\therefore \triangle A C E ≌ \triangle C B F$
$\therefore C E=B F=3,C F=A E=4$
$\because l_{1}與l_{2}的距離為1,l_2與l_3的距離為3$
$\therefore A G=1,B G=E F=C F+C E=7$
$\therefore A B=\sqrt{B G^{2}+A G^{2}}=5 \sqrt{2}$
$\because l_2// l_3$
$\therefore \frac{D G}{C E}=\frac{A G}{A E}=\frac{1}{4}$
$\therefore D G=\frac{1}{4} C E=\frac{3}{4}$
$\therefore B D=B G-D G=7-\frac{3}{4}=\frac{25}{4}$
$\therefore \frac{A B}{B D}=\frac{5 \sqrt{2}}{\frac{25}{4}}=\frac{4 \sqrt{2}}{5}$
$故選\mathrm{A}$
作業(yè)幫 $解:如右圖1所示,$
$由已知可得,\triangle DFE∽\triangle ECB,$
$則\frac{DF}{EC}=\frac{FE}{CB}=\frac{DE}{EB},$
$設(shè)DF=x,CE=y,$
$則\frac{x}{y}=\frac{9}{7}=\frac{6+y}{2+x},$
$解得\left\{\begin{array}{l}{x=\frac{27}{4}}\\{y=\frac{21}{4}}\end{array}\right.,$
$\therefore DE=CD+CE=6+\frac{21}{4}=\frac{45}{4},故選項(xiàng)B不符合題意;$作業(yè)幫
$EB=DF+AD=\frac{27}{4}+2=\frac{35}{4},故選項(xiàng)D不符合題意;$
$如圖2所示,$
$由已知可得,\triangle DCF$∽$\triangle FEB,$
$則\frac{DC}{FE}=\frac{CF}{EB}=\frac{DF}{FB},$
$設(shè)FC=m,F(xiàn)D=n,$
$則\frac{6}{9}=\frac{m}{n+2}=\frac{n}{m+7},$
$解得\left\{\begin{array}{l}{m=8}\\{n=10}\end{array}\right.,$
$\therefore FD=10,故選項(xiàng)C不符合題意;$
$BF=FC+BC=8+6=14,$
$故選:A.$
作業(yè)幫 $解:如右圖1所示,$
$由已知可得,\triangle DFE∽\triangle ECB,$
$則\frac{DF}{EC}=\frac{FE}{CB}=\frac{DE}{EB},$
$設(shè)DF=x,CE=y,$
$則\frac{x}{y}=\frac{9}{7}=\frac{6+y}{2+x},$
$解得\left\{\begin{array}{l}{x=\frac{27}{4}}\\{y=\frac{21}{4}}\end{array}\right.,$
$\therefore DE=CD+CE=6+\frac{21}{4}=\frac{45}{4},故選項(xiàng)B不符合題意;$作業(yè)幫
$EB=DF+AD=\frac{27}{4}+2=\frac{35}{4},故選項(xiàng)D不符合題意;$
$如圖2所示,$
$由已知可得,\triangle DCF$∽$\triangle FEB,$
$則\frac{DC}{FE}=\frac{CF}{EB}=\frac{DF}{FB},$
$設(shè)FC=m,F(xiàn)D=n,$
$則\frac{6}{9}=\frac{m}{n+2}=\frac{n}{m+7},$
$解得\left\{\begin{array}{l}{m=8}\\{n=10}\end{array}\right.,$
$\therefore FD=10,故選項(xiàng)C不符合題意;$
$BF=FC+BC=8+6=14,$
$故選:A.$
$解:∵D、E是邊AB的三等分點(diǎn)$
$又∵AC//DG//EF,AC=12$
$∴EF=\frac 1 3AC=4,D為AE的中點(diǎn)$
$∴DH為△AEF的中位線$
$∴DH=\frac 1 2EF=2$
$故答案為:2$
$解:∵D、E是邊AB的三等分點(diǎn)$
$又∵AC//DG//EF,AC=12$
$∴EF=\frac 1 3AC=4,D為AE的中點(diǎn)$
$∴DH為△AEF的中位線$
$∴DH=\frac 1 2EF=2$
$故答案為:2$
作業(yè)幫 $解:由題意,位似中心是O,位似比為2,$
$\therefore OC=AC,$
$\because C\left(2,3\right),$
$\therefore A\left(4,6\right)或\left(-4,-6\right),$
$故答案為:\left(4,6\right)或\left(-4,-6\right).$
作業(yè)幫 $解:由題意,位似中心是O,位似比為2,$
$\therefore OC=AC,$
$\because C\left(2,3\right),$
$\therefore A\left(4,6\right)或\left(-4,-6\right),$
$故答案為:\left(4,6\right)或\left(-4,-6\right).$
解:當(dāng)3,4為直角邊,6,8也為直角邊時(shí),此時(shí)兩三角形相似,不合題意;
$當(dāng)三邊分別為3,4,\sqrt{7},和6,8,2\sqrt{7},此時(shí)兩三角形相似,不合題意舍去$
$當(dāng)3,4為直角邊,m=5;則8為另一三角形的斜邊,其直角邊為:\sqrt{{8}^{2}-{6}^{2}}=2\sqrt{7},$
$故m+n=5+2\sqrt{7};$
$當(dāng)6,8為直角邊,n=10;則4為另一三角形的斜邊,其直角邊為:\sqrt{{4}^{2}-{3}^{2}}=\sqrt{7},$
$故m+n=10+\sqrt{7};$
$故答案為:5+2\sqrt {7}或10+\sqrt {7}.$
$解:①不能判斷是否正確$
$②∵四邊形ABCD為矩形$
$∴AD//BC$
$∴△MPD∽△NPB$
$∵AB=6,AD=8$
$∴BD=10$
$∵M(jìn)N⊥BD$
$∴△MPD∽△BAD$
$∴\frac {MD}{PD}=\frac {BD}{AD}=\frac 5 4$
$∵△MPD∽△NPB$
$∴\frac {BN}{BP}=\frac {MD}{PD}=\frac 5 4$
$∴MD=\frac 5 4PD,BN=\frac 5 4BP$
$∴MD+BN=\frac 5 4(PD+BP)=\frac 5 4BD=\frac {25}2$
$∴S_{四邊形MBND}=\frac 1 2×\frac {25}2×6=\frac {75}2$
$故②正確;$
$③當(dāng)AM∶MD=1∶2時(shí),AM=\frac 8 3,MD=\frac {16}3$
$∵M(jìn)E//AB$
$∴△MDE∽△ADB$
$∵\(yùn)frac {MD}{AD}=\frac 2 3$
$∴S_{△MDE}=\frac 4 9S_{△ABD}$
$∵△MPD∽△BAD且\frac {MD}{BD}=\frac 8{15}$
$∴S_{△MPD}=\frac {64}{225}S_{△ABD}$
$∴S_{△MPE}=S_{△MDE}-S_{△MPD}=\frac {4}{25}S_{△ABD}=\frac {96}{25}$
$故③正確;$
$④∵△MPD∽△BAD$
$∴\frac {MP}{PD}=\frac {AB}{AD}=\frac 3 4$
$∴MP=\frac 3 4PD$
$∵△MPD∽△NPB$
$∴\frac {NP}{BP}=\frac {MP}{PD}=\frac 3 4$
$∴NP=\frac 3 4BP$
$∴MN=MP+NP=\frac 3 4(PD+BP)=\frac 3 4BD=\frac {15}2$
$由①知,MD+BN=\frac {15}2$
$∴AM+CN=8+8-\frac {15}2=\frac 72$
$∴BM+ND的最小值為\sqrt {{12}^2+{(\frac 7 2)}^2}=\frac {25}2$
$∴BM+ND+MN的最小值為\frac {25}2+\frac {15}2=20$
$故④正確.$
$故答案為:②③④$