$解:①不能判斷是否正確$
$②∵四邊形ABCD為矩形$
$∴AD//BC$
$∴△MPD∽△NPB$
$∵AB=6,AD=8$
$∴BD=10$
$∵M(jìn)N⊥BD$
$∴△MPD∽△BAD$
$∴\frac {MD}{PD}=\frac {BD}{AD}=\frac 5 4$
$∵△MPD∽△NPB$
$∴\frac {BN}{BP}=\frac {MD}{PD}=\frac 5 4$
$∴MD=\frac 5 4PD,BN=\frac 5 4BP$
$∴MD+BN=\frac 5 4(PD+BP)=\frac 5 4BD=\frac {25}2$
$∴S_{四邊形MBND}=\frac 1 2×\frac {25}2×6=\frac {75}2$
$故②正確;$
$③當(dāng)AM∶MD=1∶2時(shí),AM=\frac 8 3,MD=\frac {16}3$
$∵M(jìn)E//AB$
$∴△MDE∽△ADB$
$∵\(yùn)frac {MD}{AD}=\frac 2 3$
$∴S_{△MDE}=\frac 4 9S_{△ABD}$
$∵△MPD∽△BAD且\frac {MD}{BD}=\frac 8{15}$
$∴S_{△MPD}=\frac {64}{225}S_{△ABD}$
$∴S_{△MPE}=S_{△MDE}-S_{△MPD}=\frac {4}{25}S_{△ABD}=\frac {96}{25}$
$故③正確;$
$④∵△MPD∽△BAD$
$∴\frac {MP}{PD}=\frac {AB}{AD}=\frac 3 4$
$∴MP=\frac 3 4PD$
$∵△MPD∽△NPB$
$∴\frac {NP}{BP}=\frac {MP}{PD}=\frac 3 4$
$∴NP=\frac 3 4BP$
$∴MN=MP+NP=\frac 3 4(PD+BP)=\frac 3 4BD=\frac {15}2$
$由①知,MD+BN=\frac {15}2$
$∴AM+CN=8+8-\frac {15}2=\frac 72$
$∴BM+ND的最小值為\sqrt {{12}^2+{(\frac 7 2)}^2}=\frac {25}2$
$∴BM+ND+MN的最小值為\frac {25}2+\frac {15}2=20$
$故④正確.$
$故答案為:②③④$