亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第17頁(yè)

第17頁(yè)

信息發(fā)布者:
(1,4)
(2,4)
$y=-x2+2x+3$
$y=\frac {3}{16}(x-4\sqrt{2})2或y=\frac {3}{16}(x+4\sqrt{2})2$
$ 解:(1)因?yàn)閥=\frac {3}{4}x+6$
$ 所以A(-8,0),B(0,6)$
$ 設(shè)C(m,\frac {3}{4}m+6)$
$ 所以拋物線M可表示為y=a(x-m)2+\frac {3}{4}m+6$
$ 因?yàn)閽佄锞€M經(jīng)過(guò)點(diǎn)B$
$ 所以am2+\frac {3}{4}m+6=6且m≠0$
$ 所以am=-\frac {3}{4}$
$ 即m=-\frac {3}{4a}$
$ 將m=-\frac {3}{4a}代入y=a(x-m)2+\frac {3}{4}m+6$
$ 所以y=ax2+\frac {3}{2}x+6$
$ 所以b=\frac {3}{2},c=6.$

6
$解:(1)把C(0,-3)代入y={(x-1)}^{2}+k,得$
$k=-4$
$∴此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為y={(x-1)}^{2}-4,即y={x}^{2}-2x-3$
$(2)在y={x}^{2}-2x-3中,令y=0,則x=-1或x=3$
$∴A(-1,0),B(3,0)$
$∴AB=4$
$∵P為拋物線上一點(diǎn),橫坐標(biāo)為m$
$∴點(diǎn)P的坐標(biāo)為(m,{m}^{2}-2m-3),0<m<3$
$∴S_{△ABP}=\frac 1 2AB·(-y_p)=\frac 1 2×4×[-({m}^{2}-2m-3)]=-2{m}^{2}+4m+6=-2{(m-1)}^{2}+8,0<m<3$
$∴當(dāng)m=1時(shí),S_{△ABP}取得最大值,最大值為8$
$(3)由y={(x-1)}^{2}-4,得拋物線的頂點(diǎn)坐標(biāo)為(1,-4)$
$①當(dāng)0<m\leqslant 1時(shí),h=-3-({m}^{2}-2m-3)=-{m}^{2}+2m;$
$當(dāng)1<m\leqslant 2時(shí),h=-3-(-4)=1;$
$當(dāng)m>2時(shí),h={m}^{2}-2m-3-(-4)={m}^{2}-2m+1$
$綜上所述,h={{\begin{cases} {{-{m}^{2}+2m(0<m\leqslant 1)}} \\ {1(1<m\leqslant 2)}\\ {{m}^{2}-2m+1(m>2)} \end{cases}}}$

$解:\because A\left(0,3\right),B\left(2,3\right)是拋物線y=-x^{2}+bx+c上兩點(diǎn),$
$\therefore 代入得:\left\{\begin{array}{l}{c=3}\\{-4+2b+c=3}\end{array}\right.,$
$解得:b=2,c=3,$
$\therefore y=-x^{2}+2x+3$
$=-\left(x-1\right)^{2}+4,$
$頂點(diǎn)坐標(biāo)為\left(1,4\right),$
$故答案為:\left(1,4\right).$
$解:∵拋物線y=x^2+bx+c與x軸兩個(gè)交點(diǎn)的距離為4,對(duì)稱軸為直線x=2$
$∴拋物線y=x^2+bx+c與x軸的兩個(gè)交點(diǎn)分別為(0,0)和(4,0)$
$\therefore 拋物線的解析式為y=x^{2}-4x=\left(x-2\right)^{2}-4,$
$\therefore 頂點(diǎn)P的坐標(biāo)為\left(2,-4\right),$
$\therefore 點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)是\left(2,4\right),$
$故答案是:\left(2,4\right).$
$解:y=-{x}^2+2x+c,當(dāng)x=0時(shí),y=c;$
$∴點(diǎn)B的坐標(biāo)為(0,c)$
$∵OA=OB$
$∴A(c,0)$
$將A(c,0)代入y=-{x}^2+2x+c中,得$
$-{c}^2+2c+c=0$
$解得,c=3或c=0(舍去)$
$∴c=3$
$∴拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為y=-{x}^2+2x+3.$
$故答案為:y=-{x}^{2}+2x+3$
$解:(1)因?yàn)閥=\frac {3}{4}x+6$
$所以A(-8,0),B(0,6)$
$設(shè)C(m,\frac {3}{4}m+6)$
$所以拋物線M可表示為y=a(x-m)2+\frac {3}{4}m+6$
$因?yàn)閽佄锞€M經(jīng)過(guò)點(diǎn)B$
$所以am2+\frac {3}{4}m+6=6且m≠0$
$所以am=-\frac {3}{4}$
$即m=-\frac {3}{4a}$
$將m=-\frac {3}{4a}代入y=a(x-m)2+\frac {3}{4}m+6$
$所以y=ax2+\frac {3}{2}x+6$
$所以b=\frac {3}{2},c=6.$
$解:(2)設(shè)P(p,0),C(m,\frac 3 4m+6)$
$∵CD//x軸,點(diǎn)P在x軸上,點(diǎn)C、B分別平移至點(diǎn)P、D$
$∴點(diǎn)B、C向下平移的距離相同$
$∴\frac 3 4m+6=6-(\frac 3 4m+6)$
$解得m=-4$
$由(1)可知,m=-\frac 3 {4a}$
$∴a=\frac 3 {16}$
$此時(shí)拋物線N對(duì)應(yīng)的函數(shù)表達(dá)式為y=\frac 3 {16}{(x-p)}^{2}$
$將B(0,6)代入,得p=±4\sqrt {2}$
$因?yàn)閽佄锞€N對(duì)應(yīng)的函數(shù)表達(dá)式為y=\frac 3 {16}{(x-4\sqrt {2})}^{2}或y=\frac 3 {16}{(x+4\sqrt {2})}^{2}$
$故答案為:y=\frac {3}{16}(x-4\sqrt{2})2或y=\frac {3}{16}(x+4\sqrt{2})2$
$解:(1)把C(0,-3)代入y={(x-1)}^{2}+k,得$
$k=-4$
$∴此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為y={(x-1)}^{2}-4,即y={x}^{2}-2x-3$
$解:(2)在y={x}^{2}-2x-3中,令y=0,則x=-1或x=3$
$∴A(-1,0),B(3,0)$
$∴AB=4$
$∵P為拋物線上一點(diǎn),橫坐標(biāo)為m$
$∴點(diǎn)P的坐標(biāo)為(m,{m}^{2}-2m-3),0<m<3$
$∴S_{△ABP}=\frac 1 2AB·(-y_p)=\frac 1 2×4×[-({m}^{2}-2m-3)]=-2{m}^{2}+4m+6=-2{(m-1)}^{2}+8,0<m<3$
$∴當(dāng)m=1時(shí),S_{△ABP}取得最大值,最大值為8$
$解:(3)由y={(x-1)}^{2}-4,得拋物線的頂點(diǎn)坐標(biāo)為(1,-4)$
$①當(dāng)0<m\leqslant 1時(shí),h=-3-({m}^{2}-2m-3)=-{m}^{2}+2m;$
$當(dāng)1<m\leqslant 2時(shí),h=-3-(-4)=1;$
$當(dāng)m>2時(shí),h={m}^{2}-2m-3-(-4)={m}^{2}-2m+1$
$綜上所述,h={{\begin{cases} {{-{m}^{2}+2m(0<m\leqslant 1)}} \\ {1(1<m\leqslant 2)}\\ {{m}^{2}-2m+1(m>2)} \end{cases}}}$
$②當(dāng)h=9時(shí),若-{m}^{2}+2m=9,此時(shí)△<0,m無(wú)解;$
$若{m}^{2}-2m+1=9,解得m=4或m=-2(舍),則P(4,5),△BCP的面積=\frac 12×8×4-\frac 1 2×5×1-\frac 1 2×(4+1)×3=6$