$解:(1)把C(0,-3)代入y={(x-1)}^{2}+k,得$
$k=-4$
$∴此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為y={(x-1)}^{2}-4,即y={x}^{2}-2x-3$
$(2)在y={x}^{2}-2x-3中,令y=0,則x=-1或x=3$
$∴A(-1,0),B(3,0)$
$∴AB=4$
$∵P為拋物線上一點(diǎn),橫坐標(biāo)為m$
$∴點(diǎn)P的坐標(biāo)為(m,{m}^{2}-2m-3),0<m<3$
$∴S_{△ABP}=\frac 1 2AB·(-y_p)=\frac 1 2×4×[-({m}^{2}-2m-3)]=-2{m}^{2}+4m+6=-2{(m-1)}^{2}+8,0<m<3$
$∴當(dāng)m=1時(shí),S_{△ABP}取得最大值,最大值為8$
$(3)由y={(x-1)}^{2}-4,得拋物線的頂點(diǎn)坐標(biāo)為(1,-4)$
$①當(dāng)0<m\leqslant 1時(shí),h=-3-({m}^{2}-2m-3)=-{m}^{2}+2m;$
$當(dāng)1<m\leqslant 2時(shí),h=-3-(-4)=1;$
$當(dāng)m>2時(shí),h={m}^{2}-2m-3-(-4)={m}^{2}-2m+1$
$綜上所述,h={{\begin{cases} {{-{m}^{2}+2m(0<m\leqslant 1)}} \\ {1(1<m\leqslant 2)}\\ {{m}^{2}-2m+1(m>2)} \end{cases}}}$