2.在等邊$\triangle ABC$的兩邊AB,AC所在直線上分別有兩點M,N,D為$\triangle ABC$外一點,且$∠MDN= 60^{\circ },∠BDC= 120^{\circ },BD= CD.$
(1)如圖,點M,N在邊AB,AC上,試猜想BM,CN與MN之間的數(shù)量關(guān)系,并加以證明;
(2)當點M,N在AB,CA的延長線上時,若等邊$\triangle ABC$的周長為l,AN的長為n,則$\triangle AMN$的周長為____(用含l,n的代數(shù)式表示).

答案:(1) 解:$BM + CN = MN$。
證明:如答圖①,延長$MB$至點$P$,使$BP = CN$,連接$DP$。
$\because \triangle ABC$為等邊三角形,
$\therefore \angle ACB = \angle ABC = 60^{\circ}$。
$\because BD = CD$,$\angle BDC = 120^{\circ}$,
$\therefore \angle DBC = \angle DCB = 30^{\circ}$,
$\therefore \angle ACD = \angle ABD = 90^{\circ} = \angle DBP$。
在$\triangle BDP$和$\triangle CDN$中,
$\left\{\begin{array}{l} BD = CD, \\ \angle DBP = \angle DCN, \\ BP = CN, \end{array}\right.$
$\therefore \triangle BDP \cong \triangle CDN(SAS)$。
$\therefore DP = DN$,$\angle BDP = \angle CDN$。
$\because \angle BDM + \angle CDN = 60^{\circ}$,
$\therefore \angle BDM + \angle BDP = 60^{\circ}$,即$\angle PDM = 60^{\circ}$,
$\therefore \angle PDM = \angle NDM$。
在$\triangle PDM$和$\triangle NDM$中,
$\left\{\begin{array}{l} DP = DN, \\ \angle PDM = \angle NDM, \\ DM = DM, \end{array}\right.$
$\therefore \triangle PDM \cong \triangle NDM(SAS)$。
$\therefore MP = MN$。$\therefore BM + CN = MN$。
(2) $2n + \frac{2}{3}l$ 點撥:過點$D$作$\angle CDH = \angle MDB$,邊$DH$交線段$AC$于點$H$,如答圖②。
由(1)知$\angle DCH = \angle MBD = 90^{\circ}$。
在$\triangle BMD$和$\triangle CHD$中,
$\left\{\begin{array}{l} \angle MBD = \angle HCD, \\ BD = CD, \\ \angle BDM = \angle CDH, \end{array}\right.$
$\therefore \triangle BMD \cong \triangle CHD(ASA)$,
$\therefore BM = CH$,$DM = DH$。
$\because \angle CDH = \angle MDB$,$\therefore \angle MDH = \angle BDC = 120^{\circ}$。
$\because \angle MDN = 60^{\circ}$,$\therefore \angle NDH = 120^{\circ} - 60^{\circ} = 60^{\circ}$,
$\therefore \angle MDN = \angle NDH$。
在$\triangle MDN$和$\triangle HDN$中,
$\left\{\begin{array}{l} DM = DH, \\ \angle MDN = \angle HDN, \\ ND = ND, \end{array}\right.$
$\therefore \triangle MDN \cong \triangle HDN(SAS)$,
$\therefore NM = NH = AN + AC - CH = AN + AC - BM$,
$\therefore \triangle AMN$的周長$= AN + AM + MN$
$= AN + AB + BM + AN + AC - BM$
$= 2AN + 2AB$。
$\because AN = n$,$AB = \frac{1}{3}l$,$\therefore \triangle AMN$的周長$= 2n + \frac{2}{3}l$。