25. (10分)在$\triangle ABC$中,$AB= AC$,$D是直線BC$上一點(diǎn)(不與點(diǎn)$B$,$C$重合),以$AD為一邊在AD的右側(cè)作\triangle ADE$,使$AD= AE$,$∠DAE= ∠BAC$,連接$CE$.
(1)如圖①,當(dāng)點(diǎn)$D在線段BC$上時,若$∠BAC= 90^{\circ}$,則$∠BCE= $
$90^{\circ}$
.
(2)設(shè)$∠BAC= \alpha$,$∠BCE= \beta$.
①如圖②,當(dāng)點(diǎn)$D在線段BC$上移動時,$\alpha$,$\beta$之間有怎樣的數(shù)量關(guān)系?并說明理由;
②當(dāng)點(diǎn)$D在直線BC$上移動時,$\alpha$,$\beta$之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

(2)解:①$\alpha +\beta =180^{\circ}$.
理由如下:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,
即$\angle BAD=\angle CAE$.
在$\triangle ABD$和$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE(SAS)$,
$\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB=\angle BCE=\beta$,
$\because \angle BAC+\angle B+\angle ACB=180^{\circ}$,
$\therefore \alpha +\beta =180^{\circ}$.
②當(dāng)點(diǎn)$D$在射線$BC$上時,$\alpha +\beta =180^{\circ}$;當(dāng)點(diǎn)$D$在射線$BC$的反向延長線上時,$\alpha =\beta$.