亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

零五網(wǎng) 全部參考答案 啟東中學(xué)作業(yè)本 2025年啟東中學(xué)作業(yè)本八年級數(shù)學(xué)上冊人教版 第158頁解析答案
23. (8分)(2024秋·海安期末)如圖,在等邊$\triangle ABC$中,$AD= BE$,$BD與CE相交于點(diǎn)F$.
(1)求證:$\triangle CAE\cong \triangle BCD$;
(2)過點(diǎn)$B作BG\perp CE$,垂足為$G$,若$DF= 1$,$FG= 3$,求$CE$的長.

答案:(1)證明:$\because \triangle ABC$是等邊三角形,
$\therefore AB=CA=BC,\angle A=\angle BCD=60^{\circ}$.
$\because AD=BE,\therefore AB - BE=CA - AD,\therefore AE=CD$.
在$\triangle CAE$和$\triangle BCD$中,$\left\{\begin{array}{l} CA=BC,\\ \angle A=\angle BCD,\\ AE=CD,\end{array}\right.$
$\therefore \triangle CAE\cong \triangle BCD(SAS)$.
(2)解:$\because BG\perp CE$于點(diǎn)$G,\therefore \angle BGF=90^{\circ}$.
由(1)得$\triangle CAE\cong \triangle BCD,\therefore CE=BD,\angle ACE=\angle CBD$,
$\therefore \angle BFG=\angle CBD+\angle BCE=\angle ACE+\angle BCE=\angle ACB=60^{\circ}$,
$\therefore \angle FBG=90^{\circ}-\angle BFG=30^{\circ}$.
$\because FG=3,\therefore BF=2FG=6$,
$\therefore CE=BD=BF + DF=6 + 1=7,\therefore CE$的長為7.
24. (10分)如圖,在$\triangle ABC$中,$∠ACB= 90^{\circ}$,$AC= BC$,延長$AB至點(diǎn)D$,使$DB= AB$,連接$CD$,以$CD為一直角邊作等腰Rt\triangle CDE$,其中$∠DCE= 90^{\circ}$,連接$BE$.
(1)求證:$\triangle ACD\cong \triangle BCE$;
(2)若$AB= 3cm$,則$BE= $______$cm$;
(3)$BE與AD$有何位置關(guān)系?請說明理由.

答案:
(1)證明:$\because \triangle DCE$是等腰直角三角形,$\therefore CD=CE$.
$\because \angle ACB=90^{\circ},\angle ECD=90^{\circ}$,
$\therefore \angle ECD+\angle DCB=\angle ACB+\angle DCB$,
即$\angle BCE=\angle ACD$.
在$\triangle ACD$和$\triangle BCE$中,$\left\{\begin{array}{l} CD=CE,\\ \angle ACD=\angle BCE,\\ CA=CB,\end{array}\right.$
$\therefore \triangle ACD\cong \triangle BCE(SAS)$.
(2)6
(3)解:$BE\perp AD$.理由如下:
如答圖,由(1)知$\triangle ACD\cong \triangle BCE,\therefore \angle 1=\angle 2$,
又$\because \angle 3=\angle 4,\therefore \angle EBD=\angle ECD=90^{\circ},\therefore BE\perp AD$.
第24題答圖
25. (10分)在$\triangle ABC$中,$AB= AC$,$D是直線BC$上一點(diǎn)(不與點(diǎn)$B$,$C$重合),以$AD為一邊在AD的右側(cè)作\triangle ADE$,使$AD= AE$,$∠DAE= ∠BAC$,連接$CE$.
(1)如圖①,當(dāng)點(diǎn)$D在線段BC$上時,若$∠BAC= 90^{\circ}$,則$∠BCE= $
$90^{\circ}$
.
(2)設(shè)$∠BAC= \alpha$,$∠BCE= \beta$.
①如圖②,當(dāng)點(diǎn)$D在線段BC$上移動時,$\alpha$,$\beta$之間有怎樣的數(shù)量關(guān)系?并說明理由;
②當(dāng)點(diǎn)$D在直線BC$上移動時,$\alpha$,$\beta$之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

(2)解:①$\alpha +\beta =180^{\circ}$.
理由如下:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,
即$\angle BAD=\angle CAE$.
在$\triangle ABD$和$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE(SAS)$,
$\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB=\angle BCE=\beta$,
$\because \angle BAC+\angle B+\angle ACB=180^{\circ}$,
$\therefore \alpha +\beta =180^{\circ}$.
②當(dāng)點(diǎn)$D$在射線$BC$上時,$\alpha +\beta =180^{\circ}$;當(dāng)點(diǎn)$D$在射線$BC$的反向延長線上時,$\alpha =\beta$.

答案:(1)$90^{\circ}$
(2)解:①$\alpha +\beta =180^{\circ}$.
理由如下:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,
即$\angle BAD=\angle CAE$.
在$\triangle ABD$和$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE(SAS)$,
$\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB=\angle BCE=\beta$,
$\because \angle BAC+\angle B+\angle ACB=180^{\circ}$,
$\therefore \alpha +\beta =180^{\circ}$.
②當(dāng)點(diǎn)$D$在射線$BC$上時,$\alpha +\beta =180^{\circ}$;當(dāng)點(diǎn)$D$在射線$BC$的反向延長線上時,$\alpha =\beta$.
上一頁 下一頁