解:(1)連接$PD,$$PC。$
因?yàn)?OA$、$OB$都是$\odot P$的切線,所以$\angle ODP = \angle OCP = 90^\circ。$
已知$\angle AOB = 60^\circ,$四邊形內(nèi)角和為$360^\circ,$則$\angle DPC = 360^\circ - 90^\circ - 90^\circ - 60^\circ = 120^\circ。$
$\odot P$的半徑為$3\,\text{cm},$劣弧$CD$的長(zhǎng)為$\frac{120\pi \times 3}{180} = 2\pi\,\text{cm}。$
(2)分兩種情況:
① 點(diǎn)$P$在$\angle AOB$內(nèi),連接$PE$、$PC,$延長(zhǎng)$CP$交直線$OB$于點(diǎn)$N,$過(guò)點(diǎn)$P$作$PM \perp EF,$垂足為$M。$
因?yàn)?EF = 4\sqrt{2}\,\text{cm},$所以$EM = \frac{1}{2}EF = 2\sqrt{2}\,\text{cm}。$
在$Rt\triangle EPM$中,$PE = 3\,\text{cm},$$EM = 2\sqrt{2}\,\text{cm},$則$PM = \sqrt{3^2 - (2\sqrt{2})^2} = 1\,\text{cm}。$
因?yàn)?\angle AOB = 60^\circ,$$\angle OCP = 90^\circ,$所以$\angle ONC = 30^\circ。$
在$Rt\triangle MNP$中,$\angle ONC = 30^\circ,$$PM = 1\,\text{cm},$則$PN = 2PM = 2\,\text{cm}。$
所以$CN = CP + PN = 3 + 2 = 5\,\text{cm}。$
在$Rt\triangle OCN$中,$\angle ONC = 30^\circ,$$CN = 5\,\text{cm},$則$OC = \frac{CN}{\sqrt{3}} = \frac{5\sqrt{3}}{3}\,\text{cm}。$
② 點(diǎn)$P$在$\angle AOB$外,連接$PF$、$PC,$$PC$交$EF$于點(diǎn)$N,$過(guò)點(diǎn)$P$作$PM \perp EF,$垂足為$M。$
同理可得$PM = 1\,\text{cm},$$PN = 2\,\text{cm},$則$CN = CP - PN = 3 - 2 = 1\,\text{cm}。$
在$Rt\triangle OCN$中,$\angle ONC = 30^\circ,$$CN = 1\,\text{cm},$則$OC = \frac{CN}{\sqrt{3}} = \frac{\sqrt{3}}{3}\,\text{cm}。$
綜上,$OC$的長(zhǎng)為$\frac{5\sqrt{3}}{3}\,\text{cm}$或$\frac{\sqrt{3}}{3}\,\text{cm}。$
答案:(1)$2\pi\,\text{cm};$(2)$\frac{5\sqrt{3}}{3}\,\text{cm}$或$\frac{\sqrt{3}}{3}\,\text{cm}。$